• 1
    Fonseca V, Desouza C, Asnani S, et al . Nontraditional risk factors for cardiovascular disease in diabetes. Endocr Rev. 2004; 25: 15375.
  • 2
    Duncan BB, Schmidt MI, Pankow JS, et al . Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003; 52: 1799805.
  • 3
    Pradhan AD, Manson JE, Rifai N, et al . C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001; 286: 32734.
  • 4
    Cipolletta C, Ryan KE, Hanna EV, et al . Activation of peripheral blood CD14+ monocytes occurs in diabetes. Diabetes. 2005; 54: 277986.
  • 5
    Expert Panel on the Detection, Evaluation and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001; 285: 248697.
  • 6
    Ford ES. The metabolic syndrome and mortality from cardiovascular disease and all-causes: findings from the National Health and Nutrition Examination Survey II Mortality Study. Atherosclerosis. 2004; 173: 30914.
  • 7
    Grundy SM, Brewer HB Jr, Cleeman JI, et al . Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition. Circulation. 2004; 109: 4338.
  • 8
    Kahn R, Buse J, Ferrannini E, et al . The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2005; 28: 2289304.
  • 9
    Conen D, Rexrode KM, Creager MA, et al . Metabolic syndrome, inflammation, and risk of symptomatic peripheral artery disease in women: a prospective study. Circulation. 2009; 120: 10417.
  • 10
    Ridker PM, Buring JE, Cook NR, et al . C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation. 2003; 107: 3917.
  • 11
    Holvoet P, Kritchevsky SB, Tracy RP, et al . The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes. 2004; 53: 106873.
  • 12
    Holvoet P, Lee DH, Steffes M, et al . Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA. 2008; 299: 228793.
  • 13
    Girman CJ, Rhodes T, Mercuri M, et al . The metabolic syndrome and risk of major coronary events in the Scandinavian Simvastatin Survival Study (4S) and the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Am J Cardiol. 2004; 93: 13641.
  • 14
    Hunt KJ, Resendez RG, Williams K, et al . National Cholesterol Education Program versus World Health Organization metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio Heart Study. Circulation. 2004; 110: 12517.
  • 15
    Isomaa B, Henricsson M, Almgren P, et al . The metabolic syndrome influences the risk of chronic complications in patients with type II diabetes. Diabetologia. 2001; 44: 114854.
  • 16
    Lakka HM, Laaksonen DE, Lakka TA, et al . The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002; 288: 270916.
  • 17
    Lempiainen P, Mykkanen L, Pyorala K, et al . Insulin resistance syndrome predicts coronary heart disease events in elderly nondiabetic men. Circulation. 1999; 100: 1238.
  • 18
    Malik S, Wong ND, Franklin SS, et al . Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004; 110: 124550.
  • 19
    Onat A, Ceyhan K, Basar O, et al . Metabolic syndrome: major impact on coronary risk in a population with low cholesterol levels–a prospective and cross-sectional evaluation. Atherosclerosis. 2002; 165: 28592.
  • 20
    Stern MP, Williams K, Hunt KJ. Impact of diabetes/metabolic syndrome in patients with established cardiovascular disease. Atheroscler Suppl. 2005; 6: 36.
  • 21
    Furukawa S, Fujita T, Shimabukuro M, et al . Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004; 114: 175261.
  • 22
    Heilbronn LK, Campbell LV. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des. 2008; 14: 122530.
  • 23
    Reilly MP, Lehrke M, Wolfe ML, et al . Resistin is an inflammatory marker of atherosclerosis in humans. Circulation. 2005; 111: 9329.
  • 24
    De Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett. 2008; 582: 97105.
  • 25
    Holvoet P, Theilmeier G, Shivalkar B, et al . LDL hypercholesterolemia is associated with accumulation of oxidized LDL, atherosclerotic plaque growth, and compensatory vessel enlargement in coronary arteries of miniature pigs. Arterioscler Thromb Vasc Biol. 1998; 18: 41522.
  • 26
    Simionescu M. Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol. 2007; 27: 26674.
  • 27
    Park K, Gross M, Lee DH, et al . Oxidative stress and insulin resistance: the coronary artery risk development in young adults study. Diabetes Care. 2009; 32: 13027.
  • 28
    Ronald JA, Chen JW, Chen Y, et al . Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation. 2009; 120: 5929.
  • 29
    Subbanagounder G, Leitinger N, Schwenke DC, et al . Determinants of bioactivity of oxidized phospholipids. Specific oxidized fatty acyl groups at the sn-2 position. Arterioscler Thromb Vasc Biol. 2000; 20: 224854.
  • 30
    Subbanagounder G, Wong JW, Lee H, et al . Epoxyisoprostane and epoxycyclopentenone phospholipids regulate monocyte chemotactic protein-1 and interleukin-8 synthesis. Formation of these oxidized phospholipids in response to interleukin-1beta. J Biol Chem. 2002; 277: 727181.
  • 31
    Mukhopadhyay S, Pluddemann A, Gordon S. Macrophage pattern recognition receptors in immunity, homeostasis and self tolerance. Adv Exp Med Biol. 2009; 653: 114.
  • 32
    Moura R, Tjwa M, Vandervoort P, et al . Thrombospondin-1 deficiency accelerates atherosclerotic plaque maturation in ApoE-/- mice. Circ Res. 2008; 103: 11819.
  • 33
    Sakamoto Y, Miyazaki A, Tamagawa H, et al . Specific interaction of oxidized low-density lipoprotein with thrombospondin-1 inhibits transforming growth factor-beta from its activation. Atherosclerosis. 2005; 183: 8593.
  • 34
    Virella G, Lopes-Virella MF. Atherogenesis and the humoral immune response to modified lipoproteins. Atherosclerosis. 2008; 200: 23946.
  • 35
    Wigren M, Bengtsson D, Duner P, et al . Atheroprotective effects of Alum are associated with capture of oxidized LDL antigens and activation of regulatory T cells. Circ Res. 2009; 104: e62e70.
  • 36
    Holvoet P, Davey PC, De Keyzer D, et al . Oxidized low-density lipoprotein correlates positively with toll-like receptor 2 and interferon regulatory factor-1 and inversely with superoxide dismutase-1 expression: studies in hypercholesterolemic swine and THP-1 cells. Arterioscler Thromb Vasc Biol. 2006; 26: 155865.
  • 37
    Hakala JK, Oorni K, Pentikainen MO, et al . Lipolysis of LDL by human secretory phospholipase A(2) induces particle fusion and enhances the retention of LDL to human aortic proteoglycans. Arterioscler Thromb Vasc Biol. 2001; 21: 10538.
  • 38
    Pruzanski W, Lambeau L, Lazdunsky M, et al . Differential hydrolysis of molecular species of lipoprotein phosphatidylcholine by groups IIA, V and X secretory phospholipases A2. Biochim Biophys Acta. 2005; 1736: 3850.
  • 39
    Karabina SA, Brocheriou I, Le Naour G, et al . Atherogenic properties of LDL particles modified by human group X secreted phospholipase A2 on human endothelial cell function. FASEB J. 2006; 20: 25479.
  • 40
    Sato H, Kato R, Isogai Y, et al . Analyses of group III secreted phospholipase A2 transgenic mice reveal potential participation of this enzyme in plasma lipoprotein modification, macrophage foam cell formation, and atherosclerosis. J Biol Chem. 2008; 283: 3348397.
  • 41
    Boyanovsky B, Zack M, Forrest K, et al . The capacity of group V sPLA2 to increase atherogenicity of ApoE-/- and LDLR-/- mouse LDL in vitro predicts its atherogenic role in vivo. Arterioscler Thromb Vasc Biol. 2009; 29: 5328.
  • 42
    De Keyzer D, Karabina SA, Wei W, et al . Increased PAFAH and oxidized lipids are associated with inflammation and atherosclerosis in hypercholesterolemic pigs. Arterioscler Thromb Vasc Biol. 2009; 29: 204146.
  • 43
    Vickers KC, Maguire CT, Wolfert R, et al . Relationship of lipoprotein-associated phospholipase A2 and oxidized low-density lipoprotein in carotid atherosclerosis. J Lipid Res. 2009; 50: 173543.
  • 44
    Merrill AH Jr, Jones DD. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta. 1990; 1044: 112.
  • 45
    Liu J, Huan C, Chakraborty M, et al . Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ Res. 2009; 105: 295303.
  • 46
    Kolmakova A, Kwiterovich P, Virgil D, et al . Apolipoprotein C-I induces apoptosis in human aortic smooth muscle cells via recruiting neutral sphingomyelinase. Arterioscler Thromb Vasc Biol. 2004; 24: 2649.
  • 47
    Auge N, Maupas-Schwalm F, Elbaz M, et al . Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation. Circulation. 2004; 110: 5718.
  • 48
    Segers D, Helderman F, Cheng C, et al . Gelatinolytic activity in atherosclerotic plaques is highly localized and is associated with both macrophages and smooth muscle cells in vivo. Circulation. 2007; 115: 60916.
  • 49
    Mertens A, Verhamme P, Bielicki JK, et al . Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis. Circulation. 2003; 107: 16406.
  • 50
    Mertens A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J. 2001; 15: 207384.
  • 51
    McLaughlin T, Abbasi F, Kim HS, et al . Relationship between insulin resistance, weight loss, and coronary heart disease risk in healthy, obese women. Metabolism. 2001; 50: 795800.
  • 52
    Verreth W, De Keyzer D, Pelat M, et al . Weight-loss-associated induction of peroxisome proliferator-activated receptor-alpha and peroxisome proliferator-activated receptor-gamma correlate with reduced atherosclerosis and improved cardiovascular function in obese insulin-resistant mice. Circulation. 2004; 110: 325969.
  • 53
    Verreth W, De Keyzer D, Davey PC, et al . Rosuvastatin restores superoxide dismutase expression and inhibits accumulation of oxidized LDL in the aortic arch of obese dyslipidemic mice. Br J Pharmacol. 2007; 151: 34755.
  • 54
    Desjardins F, Sekkali B, Verreth W, et al . Rosuvastatin increases vascular endothelial PPARgamma expression and corrects blood pressure variability in obese dyslipidaemic mice. Eur Heart J. 2008; 29: 12837.
  • 55
    Bouhlel MA, Derudas B, Rigamonti E, et al . PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 2007; 6: 13743.
  • 56
    Walczak R, Joseph SB, Laffitte BA, et al . Transcription of the vascular endothelial growth factor gene in macrophages is regulated by liver X receptors. J Biol Chem. 2004; 279: 990511.
  • 57
    Pasarica M, Sereda OR, Redman LM, et al . Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009; 58: 71825.
  • 58
    Kintscher U, Hartge M, Hess K, et al . T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol. 2008; 28: 130410.
  • 59
    Nishimura S, Manabe I, Nagasaki M, et al . CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009; 15: 91420.
  • 60
    Feuerer M, Herrero L, Cipolletta D, et al . Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009; 15: 9309.
  • 61
    Bastard JP, Maachi M, Lagathu C, et al . Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006; 17: 412.
  • 62
    Arkan MC, Hevener AL, Greten FR, et al . IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005; 11: 1918.
  • 63
    Uysal KT, Wiesbrock SM, Marino MW, et al . Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997; 389: 6104.
  • 64
    Weisberg SP, Hunter D, Huber R, et al . CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006; 116: 11524.
  • 65
    Cho CH, Koh YJ, Han J, et al . Angiogenic role of LYVE-1-positive macrophages in adipose tissue. Circ Res. 2007; 100: e47e57.
  • 66
    Cinti S, Mitchell G, Barbatelli G, et al . Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005; 46: 234755.
  • 67
    Schwab JM, Chiang N, Arita M, et al . Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature. 2007; 447: 86974.
  • 68
    Spite M, Summers L, Porter TF, et al . Resolvin D1 controls inflammation initiated by glutathione-lipid conjugates formed during oxidative stress. Br J Pharmacol. 2009; 158: 106273.
  • 69
    Masella R, Vari R, D’Archivio M, et al . Oxidised LDL modulate adipogenesis in 3T3-L1 preadipocytes by affecting the balance between cell proliferation and differentiation. FEBS Lett. 2006; 580: 24219.
  • 70
    Nishimura S, Manabe I, Nagasaki M, et al . Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes. 2007; 56: 151726.
  • 71
    Stengel D, Antonucci M, Gaoua W, et al . Inhibition of LPL expression in human monocyte-derived macrophages is dependent on LDL oxidation state: a key role for lysophosphatidylcholine. Arterioscler Thromb Vasc Biol. 1998; 18: 117280.
  • 72
    Merkel M, Heeren J, Dudeck W, et al . Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake. J Biol Chem. 2002; 277: 740511.
  • 73
    Ouedraogo R, Wu X, Xu SQ, et al . Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes. 2006; 55: 18406.
  • 74
    Son BK, Akishita M, Iijima K, et al . Adiponectin antagonizes stimulatory effect of tumor necrosis factor-alpha on vascular smooth muscle cell calcification: regulation of growth arrest-specific gene 6-mediated survival pathway by adenosine 5′-monophosphate-activated protein kinase. Endocrinology. 2008; 149: 164653.
  • 75
    Goodpaster BH, Krishnaswami S, Harris TB, et al . Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med. 2005; 165: 77783.