• Open Access

SKAP2, a novel target of HSF4b, associates with NCK2/F-actin at membrane ruffles and regulates actin reorganization in lens cell

Authors

  • Li Zhou,

    1. The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People’s Republic of China
    Search for more papers by this author
  • Zhenguo Zhang,

    1. The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People’s Republic of China
    Search for more papers by this author
  • Yufang Zheng,

    1. Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
    Search for more papers by this author
  • Yufei Zhu,

    1. The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People’s Republic of China
    Search for more papers by this author
  • Zejun Wei,

    1. The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People’s Republic of China
    Search for more papers by this author
  • Heng Xu,

    1. The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People’s Republic of China
    Search for more papers by this author
  • Quan Tang,

    1. The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People’s Republic of China
    Search for more papers by this author
  • Xiangyin Kong,

    1. The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People’s Republic of China
    2. State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China
    Search for more papers by this author
  • Landian Hu

    Corresponding author
    1. The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People’s Republic of China
    Search for more papers by this author

Correspondence to: Landian HU,
IHS Bldg 5, 225 Chongqing Rd, Shanghai 200025,
People’s Republic of China.
Tel.: +86-21-63852639
Fax: +86-21-63844476
E-mail: ldhu@sibs.ac.cn

Abstract

In addition to roles in stress response, heat shock factors (HSFs) play crucial roles in differentiation and development. Heat shock transcription factor 4 (HSF4) deficiency leads to defect in lens epithelial cell (LEC) differentiation and cataract formation. However, the mechanism remains obscure. Here, we identified Src kinase-associated phosphoprotein 2 (SKAP2) as a downstream target of HSF4b and it was highly expressed at the anterior tip of lens elongating fibre cells in vivo. The HSF4-deficient lenses showed reduced SKAP2 expression and defects in actin reorganization. The disassembly of stress fibres and formation of cortical actin fibres are critical for the initiation of LEC differentiation. SKAP2 localized at actin-rich ruffles in human LECs (SRA01/04 cells) and knockdown SKAP2 using RNA interference impaired the disassembly of cellular stress fibres in response to fibroblast growth factor (FGF)-b. Overexpression of SKAP2, but not the N-terminal deletion mutant of SKAP2, induced the actin remodelling. We further found that SKAP2 interacted with the SH2 domain of non-catalytic region of tyrosine kinase adaptor protein 2 (NCK2) via its N-terminus. The complex of SKAP2-NCK2-F-actin accumulated at the leading edge of the lamellipodium, where FGF receptors and focal adhesion were also recruited. These results revealed an essential role for HSF4-mediated SKAP2 expression in the regulation of actin reorganization during lens differentiation, likely through a mechanism that SKAP2 anchors the complex of NCK2/focal adhesion to FGF receptors at the lamellipodium in lens epithelial cells.

Ancillary