• 1
    Lie-Venema H, van den Akker NMS, Bax NAM, et al . Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Sci World J. 2007; 7: 177798.
  • 2
    Winter EM, Grauss RW, Hogers B, et al . Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation. 2007; 116: 91727.
  • 3
    Gittenberger-de Groot AC, Vrancken Peeters M-PFM, Mentink MMT, et al . Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998; 82: 104352.
  • 4
    Dettman RW, Denetclaw W, Ordahl CP, et al . Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol. 1998; 193: 16981.
  • 5
    Vrancken Peeters M-PFM, Gittenberger-de Groot AC, Mentink MMT, et al . Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol. 1999; 199: 36778.
  • 6
    Eralp I, Lie-Venema H, DeRuiter MC, et al . Coronary artery and orifice development is associated with proper timing of epicardial outgrowth and correlated Fas ligand associated apoptosis patterns. Circ Res. 2005; 96: 52634.
  • 7
    Gittenberger-de Groot AC, Vrancken Peeters M-PFM, Bergwerff M, et al . Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res. 2000; 87: 96971.
  • 8
    Van Loo PF, Mahtab EAF, Wisse LJ, et al . Transcription Factor Sp3 knockout mice display serious cardiac malformations. Mol Cell Biol. 2007; 27: 857182.
  • 9
    Mahtab EAF, Wijffels MCEF, van den Akker NMS, et al . Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: correlation with abnormal epicardial development. Dev Dyn. 2008; 237: 84757.
  • 10
    Eralp I, Lie-Venema H, Bax NAM, et al . Epicardium-derived cells are important for correct development of the Purkinje fibers in the avian heart. Anat Rec. 2006; 288A: 127280.
  • 11
    Eid H, Larson DM, Springhorn JP, et al . Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circ Res. 1992; 71: 4050.
  • 12
    van Tuyn J, Atsma DE, Winter EM, et al . Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells. 2007; 25: 2718.
  • 13
    Winter EM, Grauss RW, Hogers B, et al . Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation. 2007; 116: 91727.
  • 14
    Wills AA, Holdway JE, Major RJ, et al . Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development. 2008; 135: 18392.
  • 15
    Gittenberger-de Groot AC. Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia. J Cell Mol Med. 2010; 14: 105660.
  • 16
    Smart N, Risebro CA, Melville AA, et al . Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007; 445: 17782.
  • 17
    Winter EM, Van Oorschot AA, Hogers B, et al . A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Circ Heart Fail. 2009; 2: 64353.
  • 18
    Leobon B, Garcin I, Menasche P, et al . Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA. 2003; 100: 780811.
  • 19
    Gaudesius G, Miragoli M, Thomas SP, et al . Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res. 2003; 93: 4218.
  • 20
    Pijnappels DA, Schalij MJ, van Tuyn J, et al . Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling. Cardiovasc Res. 2006; 72: 28291.
  • 21
    Pijnappels DA, van Tuyn J, de Vries AA, et al . Resynchronization of separated rat cardiomyocyte fields with genetically modified human ventricular scar fibroblasts. Circulation. 2007; 116: 201828.
  • 22
    Pijnappels DA, Schalij MJ, Ramkisoensing AA, et al . Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res. 2008; 103: 16776.
  • 23
    Winter EM, Gittenberger-de Groot AC. Cardiovascular development: towards biomedical applicability: epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci. 2007; 64: 692703.
  • 24
    Manner J. Extracardiac tissues and the epigenetic control of myocardial development in vertebrate embryos. Ann Anat. 2006; 188: 199212.
  • 25
    Abu-Issa R, Waldo K, Kirby ML. Heart fields: one, two or more? Dev Biol. 2004; 272: 2815.
  • 26
    Jongbloed MR, Mahtab EAF, Blom NA, et al . Development of the cardiac conduction system and the possible relation to predilection sites of arrhythmogenesis. Sci World J. 2008; 8:23969.
  • 27
    Gourdie RG, Wei Y, Kim D, et al . Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci USA. 1998; 95: 68158.
  • 28
    Hyer J, Johansen M, Prasad A, et al . Induction of purkinje fiber differentiation by coronary arterialization. Proc Natl Acad Sci USA. 1999; 96: 132148.
  • 29
    Zhou B, Ma Q, Rajagopal S, et al . Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008; 454: 10913.
  • 30
    Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005; 65: 4051.
  • 31
    Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor β isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs. 2007; 185: 14656.
  • 32
    Nishii K, Kumai M, Shibata Y. Regulation of the epithelial-mesenchymal transformation through gap junction channels in heart development. Trends Cardiovasc Med. 2001; 11: 2138.
  • 33
    Wu JC, Tsai RY, Chung TH. Role of catenins in the development of gap junctions in rat cardiomyocytes. J Cell Biochem. 2003; 88: 82335.
  • 34
    Luo Y, High FA, Epstein JA, et al . N-cadherin is required for neural crest remodeling of the cardiac outflow tract. Dev Biol. 2006; 299: 51728.
  • 35
    Ai Z, Fischer A, Spray DC, et al . Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest. 2000; 105: 16171.
  • 36
    Li J, Patel VV, Kostetskii I, et al . Cardiac-specific loss of N-cadherin leads to alteration in connexins with conduction slowing and arrhythmogenesis. Circ Res. 2005; 97: 47481.
  • 37
    de Boer TP, van Veen TA, Bierhuizen MF, et al . Connexin43 repression following epithelium-to-mesenchyme transition in embryonal carcinoma cells requires Snail1 transcription factor. Differentiation. 2007; 75: 20818.
  • 38
    Brink PR. Gap junctions in vascular smooth muscle. Acta Physiol Scand. 1998; 164: 34956.
  • 39
    Dhein S, Hagen A, Jozwiak J, et al . Improving cardiac gap junction communication as a new antiarrhythmic mechanism: the action of antiarrhythmic peptides. Naunyn Schmiedebergs Arch Pharmacol. 2010; 381: 22134.
  • 40
    Coppen SR, Dupont E, Rothery S, et al . Connexin45 expression is preferentially associated with the ventricular conduction system in mouse and rat heart. Circ Res. 1998; 82: 23243.
  • 41
    Huber SM, Braun GS, Segerer S, et al . Metanephrogenic mesenchyme-to-epithelium transition induces profound expression changes of ion channels. Am J Physiol Renal Physiol. 2000; 279: F6576.
  • 42
    Compton LA, Potash DA, Mundell NA, et al . Transforming growth factor-beta induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells. Dev Dyn. 2006; 235: 8293.
  • 43
    Avila G, Medina IM, Jimenez E, et al . Transforming growth factor-beta1 decreases cardiac muscle L-type Ca2+ current and charge movement by acting on the Cav1.2 mRNA. Am J Physiol Heart Circ Physiol. 2007; 292: H62231.
  • 44
    Chang CT, Hung CC, Chen YC, et al . Transforming growth factor-beta1 decreases epithelial sodium channel functionality in renal collecting duct cells via a Smad4-dependent pathway. Nephrol Dial Transplant. 2008; 23: 112634.