• 1
    Song LS, Sobie EA, McCulle S, et al. Orphaned ryanodine receptors in the failing heart. Proc Natl Acad Sci USA. 2006; 11: 430510.
  • 2
    Brette F, Orchard C. T-tubule function in mammalian cardiac myocytes. Circ Res. 2003; 11: 118292.
  • 3
    Ibrahim M, Gorelik J, Yacoub MH, et al. The structure and function of cardiac t-tubules in health and disease. Proc Biol Sci. 2011; 1719: 271423.
  • 4
    Lyon AR, MacLeod KT, Zhang Y, et al. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci USA. 2009; 16: 68549.
  • 5
    Wei S, Guo A, Chen B, et al. T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res. 2010; 4: 52031.
  • 6
    Ibrahim M, Al Masri A, Navaratnarajah M, et al. Prolonged mechanical unloading affects cardiomyocyte excitation-contraction coupling, transverse-tubule structure, and the cell surface. FASEB J. 2010; 9: 33219.
  • 7
    Soppa GK, Lee J, Stagg MA, et al. Prolonged mechanical unloading reduces myofilament sensitivity to calcium and sarcoplasmic reticulum calcium uptake leading to contractile dysfunction. J Heart Lung Transplant. 2008; 8: 8829.
  • 8
    Ibrahim M, Navaratnarajah M, Siedlecka U, et al. Mechanical unloading reverses transverse tubule remodelling and normalizes local Ca2+-induced Ca2+ release in a rodent model of heart failure. Eur J Heart Fail. 2012; 14: 5780.
  • 9
    Oriyanhan W, Tsuneyoshi H, Nishina T, et al. Determination of optimal duration of mechanical unloading for failing hearts to achieve bridge to recovery in a rat heterotopic heart transplantation model. J Heart Lung Transplant. 2007; 1: 1623.
  • 10
    Birks EJ, Tansley PD, Hardy J, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006; 18: 187384.
  • 11
    Maybaum S, Mancini D, Xydas S, et al. Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation. 2007; 19: 2497505.
  • 12
    Wang J, Marui A, Ikeda T, et al. Partial left ventricular unloading reverses contractile dysfunction and helps recover gene expressions in failing rat hearts. Interact Cardiovasc Thorac Surg. 2008; 1: 2731.
  • 13
    Wang J, Tsukashita M, Nishina T, et al. Chronic partial unloading restores beta-adrenergic responsiveness and reverses receptor downregulation in failing rat hearts. J Thorac Cardiovasc Surg. 2009; 2: 46570.
  • 14
    Soppa GK, Lee J, Stagg MA, et al. Role and possible mechanisms of clenbuterol in enhancing reverse remodelling during mechanical unloading in murine heart failure. Cardiovasc Res. 2008; 4: 695706.
  • 15
    Ono K, Lindsey ES. Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg. 1969; 2: 2259.
  • 16
    Ibrahim M, Navaratnarajah M, Kukadia P, et al. Heterotopic abdominal heart transplantation in rats for functional studies of ventricular unloading. J Surg Res. 2012. doi:10.1016/j.jss.2012.01.053.
  • 17
    Del Monte F, Butler K, Boecker W, et al. Novel technique of aortic banding followed by gene transfer during hypertrophy and heart failure. Physiol Genomics. 2002; 1: 4956.
  • 18
    Siedlecka U, Arora M, Kolettis T, et al. Effects of clenbuterol on contractility and Ca2+ homeostasis of isolated rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008; 5: H191726.
  • 19
    Gu Y, Gorelik J, Spohr HA, et al. High-resolution scanning patch-clamp: new insights into cell function. FASEB J. 2002; 7: 74850.
  • 20
    Novak P, Li C, Shevchuk AI, et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods. 2009; 4: 27981.
  • 21
    Nikolaev VO, Moshkov A, Lyon AR, et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science. 2010; 5973: 16537.
  • 22
    Gorelik J, Yang LQ, Zhang Y, et al. A novel Z-groove index characterizing myocardial surface structure. Cardiovasc Res. 2006; 3: 4229.
  • 23
    Ibrahim M, Terracciano CM, Yacoub MH. Bridge to recovery: what remains to be discovered? Cardiol Clin. 2011; 4: 53147.
  • 24
    Terracciano CM, Hardy J, Birks EJ, et al. Clinical recovery from end-stage heart failure using left-ventricular assist device and pharmacological therapy correlates with increased sarcoplasmic reticulum calcium content but not with regression of cellular hypertrophy. Circulation. 2004; 19: 22635.
  • 25
    Lisy O, Redfield MM, Jovanovic S, et al. Mechanical unloading versus neurohumoral stimulation on myocardial structure and endocrine function In vivo. Circulation. 2000; 3: 33843.
  • 26
    Stolen TO, Hoydal MA, Kemi OJ, et al. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res. 2009; 6: 52736.
  • 27
    Diaz ME, Graham HK, Trafford AW. Enhanced sarcolemmal Ca2+ efflux reduces sarcoplasmic reticulum Ca2+ content and systolic Ca2+ in cardiac hypertrophy. Cardiovasc Res. 2004; 3: 53847.
  • 28
    Li Y, Bers DM. A cardiac dihydropyridine receptor II-III loop peptide inhibits resting Ca(2+) sparks in ferret ventricular myocytes. J Physiol. 2001; 537: 1726.
  • 29
    Venetucci LA, Trafford AW, O'Neill SC, et al. The sarcoplasmic reticulum and arrhythmogenic calcium release. Cardiovasc Res. 2008; 2: 28592.
  • 30
    Bers DM. Cardiac ryanodine receptor phosphorylation: target sites and functional consequences. Biochem J. 2006; 1: e13.
  • 31
    Hove-Madsen L, Llach A, Bayes-Genis A, et al. Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation. 2004; 11: 135863.
  • 32
    Liang X, Xie H, Zhu PH, et al. Ryanodine receptor-mediated Ca2+ events in atrial myocytes of patients with atrial fibrillation. Cardiology. 2008; 2: 10210.
  • 33
    Louch WE, Sejersted OM, Swift F. There goes the neighborhood: pathological alterations in T-tubule morphology and consequences for cardiomyocyte Ca2+ handling. J Biomed Biotechnol. 2010, 503906.
  • 34
    Lopez JR, Jovanovic A, Terzic A. Spontaneous calcium waves without contraction in cardiac myocytes. Biochem Biophys Res Commun. 1995; 3: 7817.
  • 35
    Louch WE, Mork HK, Sexton J, et al. T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J Physiol. 2006; 574: 51933.