SEARCH

SEARCH BY CITATION

References

  • 1
    Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling – concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. 2000; 35: 56982.
  • 2
    Fedak PWM, Verma S, Weisel RD, et al. Cardiac remodeling and failure from molecules to man (Part I). Cardiovasc Physiol. 2005; 12: 111.
  • 3
    Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999; 79: 21562.
  • 4
    Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation. 1990; 81: 116172.
  • 5
    Hasenfuss G. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res. 1998; 37: 27989.
  • 6
    Dhalla NS, Rangi S, Babick AP, et al. Cardiac remodeling and subcellular defects in heart failure due to myocardial infarction and aging. Heart Fail Rev. 2011; doi: 10.1007/s10741-011-9278-7.
  • 7
    Morano I, Hadicke K, Haase H, et al. Changes in essential myosin light chain isoform expression provide a molecular basis for isometric force regulation in the failing human heart. J Mol Cell Cardiol. 1997; 29: 117787.
  • 8
    Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res. 1998; 39: 6076.
  • 9
    Prestle J, Quinn FR, Smith GL. Ca2+-handling proteins and heart failure: novel molecular targets? Curr Med Chem. 2003; 10: 96781.
  • 10
    Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D, et al. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res. 2009; 81: 42938.
  • 11
    Machackova J, Barta J, Dhalla NS. Myofibrillar remodeling in cardiac hypertrophy, heart failure and cardiomyopathies. Can J Cardiol. 2006; 22: 95368.
  • 12
    Weir MR, Dzau VJ. The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am J Hypertens. 1995; 12: 205S13S.
  • 13
    Francis GS, Cohn JN, Johnson G, et al. Plasma norepinephrine, plasma-renin activity, and congestive heart failure. Relations to survival and the effects of therapy in V-HeFT II. The V-HeFT VA Cooperative Studies Group. Circulation. 1993; 87(Suppl. VI): 408.
  • 14
    Esler M, Lambert G, Brunner-La Rocca HP, et al. Sympathetic nerve activity and neurotransmitter release in humans: translation from pathophysiology into clinical practice. Acta Physiol Scand. 2003; 177: 27584.
  • 15
    Sallach JA, Goldstein S. Use of beta-blockers in congestive heart failure. Ann Med. 2003; 35: 25966.
  • 16
    Krum H. Beta-blockers in heart failure. The ‘new wave’ of clinical trials. Drugs. 1999; 58: 20310.
  • 17
    Dickstein K, Kjekshus J. OPTIMAAL Steering Committee of the OPTIMAAL Study Group. Effects of losartan and captopril on mortality and morbidity in high-risk patients after acute myocardial infarction: the OPTIMAAL randomised trial. Optimal Trial in Myocardial Infarction with Angiotensin II Antagonist Losartan. Lancet. 2002; 360: 75260.
  • 18
    Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003; 362: 77781.
  • 19
    Guo X, Saini HK, Wang J, et al. Prevention of remodeling in congestive heart failure due to myocardial infarction by blockade of renin angiotensin system. Expert Rev Cardiovasc Therap. 2005; 3: 71732.
  • 20
    Shao Q, Ren B, Zarain-Herzberg A, et al. Captopril treatment improves the sarcoplasmic reticular Ca2+ transport in heart failure due to myocardial infarction. J Mol Cell Cardiol. 1999; 31: 166372.
  • 21
    Shao Q, Ren B, Elimban V, et al. Modification of sarcolemmal Na+-K+ ATPase and Na+/Ca2+ exchanger expression in heart failure by blockade of renin-angiotensin system. Am J Physiol Heart Circ Physiol. 2005; 288: H263746.
  • 22
    Shao Q, Ren B, Saini HK, et al. Sarcoplasmic reticulum Ca2+-transport and gene expression in congestive heart failure are modified by imidapril treatment. Am J Physiol Heart Circ Physiol. 2005; 288: H167482.
  • 23
    Semb SO, Lunde PK, Holt E, et al. Reduced myocardial Na+, K+-pump capacity in congestive heart failure following myocardial infarction in rats. J Mol Cell Cardiol. 1998; 30: 131128.
  • 24
    Hanatani A, Yoshiyama M, Takeuchi K, et al. Angiotensin II type 1-receptor antagonist candesartan cilexitil prevents left ventricular dysfunction in myocardial infarcted rats. Jpn J Pharmacol. 1998; 78: 4554.
  • 25
    Guo X, Chapman D, Dhalla NS. Partial prevention of changes in SR gene expression in congestive heart failure due to myocardial infarction by enalapril or losartan. Mol Cell Biochem. 2003; 254: 16372.
  • 26
    Wang J, Guo X, Dhalla NS. Modification of myosin protein and gene expression in failing hearts due to myocardial infarction by enalapril or losartan. Biochim Biophys Acta. 2004; 1690: 17784.
  • 27
    Wang J, Liu X, Ren B, et al. Modification of myosin gene expression by imidapril in failing heart due to myocardial infarction. J Mol Cell Cardiol. 2002; 34: 84757.
  • 28
    Maczewski M, Mackiewicz U. Effect of metoprolol and ivabradine on left ventricular remodelling and Ca2+ handling in the post-infarction rat heart. Cardiovasc Res. 2008; 79: 4251.
  • 29
    Sun YL, Hu SJ, Wang LH, et al. Effect of beta-blockers on cardiac function and calcium handling protein in postinfarction heart failure rats. Chest. 2005; 128: 181221.
  • 30
    Omerovic E, Bollano E, Soussi B, et al. Selective beta1-blockade attenuates post-infarct remodelling without improvement in myocardial energy metabolism and function in rats with heart failure. Eur J Heart Fail. 2003; 5: 72532.
  • 31
    Omerovic E, Bollano E, Mobini R, et al. Selective beta(1)-blockade improves cardiac bioenergetics and function and decreases neuroendocrine activation in rats during early postinfarct remodeling. Biochem Biophys Res Commun. 2001; 281: 4918.
  • 32
    Dhalla NS, Dent MR, Tappia PS, et al. Subcellular remodeling as a viable target for the treatment of congestive heart failure. J Cardiovasc Pharmacol Therapeut. 2006; 11: 3145.
  • 33
    Gurevich AK, Falk SA, Nemenoff RA, et al. Effects of angiotensin receptor blockade on haemodynamics and gene expression after myocardial infarction. Drugs R D. 2002; 3: 23949.
  • 34
    Machackova J, Sanganalmath SK, Barta J, et al. Amelioration of cardiac remodelling in congestive heart failure by beta-adrenoceptor blockade is associated with depression in sympathetic activity. Cardiovasc Toxicol. 2009; 10: 916.
  • 35
    Machackova J, Sanganalmath SK, Elimban V, et al. β-adrenergic blockade attenuates cardiac dysfunction and myofibrillar remodeling in congestive heart failure. J Cell Mol Med. 2011; 15: 54554.
  • 36
    Dixon IM, Lee SL, Dhalla NS. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res. 1990; 66: 7828.
  • 37
    Dixon IM, Hata T, Dhalla NS. Sarcolemmal calcium transport in congestive heart failure due to myocardial infarction in rats. Am J Physiol Heart Circ Physiol. 1992; 31: H138794.
  • 38
    Sanganalmath SK, Barta J, Takeda N, et al. Antiplatelet therapy mitigates cardiac remodeling and dysfunction in congestive heart failure due to myocardial infarction. Can J Physiol Pharmacol. 2008; 86: 1809.
  • 39
    Sanganalmath SK, Babick AP, Barta J, et al. Antiplatelet therapy attenuates subcellular remodelling in congestive heart failure. J Cell Mol Med. 2008; 12: 172838.
  • 40
    Wang J, Liu X, Sentex E, et al. Increased expression of protein kinase C isoforms in heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol. 2003; 284: H227787.
  • 41
    Sjaastad I, Sejersted OM, Ilebekk A, et al. Echocardiographic criteria for detection of postinfarction congestive heart failure in rats. J Appl Physiol. 2000; 89: 144554.
  • 42
    Birkeland JA, Sjaastad I, Brattelid T, et al. Effects of treatment with a 5-HT4 receptor antagonist in heart failure. Br J Pharmacol. 2007; 150: 14352.
  • 43
    Huang BS, Ahmad M, Tan J, et al. Chronic central versus systemic blockade of AT1 receptors and cardiac dysfunction in rats post myocardial infarction. Am J Physiol Heart Circ Physiol. 2009; 297: H96875.
  • 44
    Zhu YZ, Zhu YC, Li J, et al. Effects of losartan on haemodynamic parameters and angiotensin receptor mRNA levels in rat heart after myocardial infarction. J Renin Angiotensin Aldosterone Syst. 2000; 1: 25762.
  • 45
    Sethi R, Shao Q, Ren B, et al. Changes in beta-adrenoceptors in heart failure due to myocardial infarction are attenuated by blockade of renin-angiotensin system. Mol Cell Biochem. 2004; 263: 1120.
  • 46
    Khaper N, Singal PK. Modulation of oxidative stress by a selective inhibition of angiotensin II type 1 receptors in MI rats. J Am Coll Cardiol. 2001; 37: 14616.
  • 47
    Afzal N, Dhalla NS. Differential changes in left and right ventricular SR calcium transport in congestive heart failure. Am J Physiol Heart Circ Physiol. 1992; 262: H86874.
  • 48
    Ren B, Shao Q, Ganguly PK, et al. Influence of long-term treatment of imidapril on mortality, cardiac function, and gene expression in congestive heart failure due to myocardial infarction. Can J Physiol Pharmacol. 2004; 82: 111827.
  • 49
    Ju H, Zhao S, Jassal DS, et al. Effect of AT1 receptor blockade on cardiac collagen remodeling after myocardial infarction. Cardiovasc Res. 1997; 35: 22332.
  • 50
    Guo X, Wang J, Elimban V, et al. Both enalapril and losartan attenuate sarcolemmal Na+-K+-ATPase remodeling in failing rat heart due to myocardial infarction. Can J Physiol Pharmacol. 2008; 86: 13947.
  • 51
    Saini HK, Shao Q, Musat S, et al. Imidapril treatment improves the attenuated inotropic and intracellular calcium responses to ATP in heart failure due to myocardial infarction. Br J Pharmacol. 2005; 144: 20211.