SEARCH

SEARCH BY CITATION

References

  • 1
    Dickerson SM, Gore AC. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Rev Endocr Metab Disord. 2007; 8: 14359.
  • 2
    Fowler PA, Bellingham M, Sinclair KD, et al. Impact of endocrine-disrupting compounds (EDCs) on female reproductive health. Mol Cell Endocrinol. 2012; 355: 2139.
  • 3
    Byrnes EM, Casey K, Bridges RS. Reproductive experience modifies the effects of estrogen receptor alpha activity on anxiety-like behavior and corticotropin releasing hormone mRNA expression. Horm Behav. 2011; 61: 449.
  • 4
    Ijichi N, Ikeda K, Horie-Inoue K, et al. Estrogen-related receptor alpha modulates the expression of adipogenesis-related genes during adipocyte differentiation. Biochem Biophys Res Commun. 2007; 358: 8138.
  • 5
    Hwang KA, Park SH, Yi BR, et al. Gene alterations of ovarian cancer cells expressing estrogen receptors by estrogen and bisphenol a using microarray analysis. Lab Anim Res. 2011; 27: 99107.
  • 6
    Fernandez SV, Russo J. Estrogen and xenoestrogens in breast cancer. Toxicol Pathol. 2010; 38: 11022.
  • 7
    McLachlan JA, Simpson E, Martin M. Endocrine disrupters and female reproductive health. Best Pract Res Clin Endocrinol Metab. 2006; 20: 6375.
  • 8
    Craig ZR, Wang W, Flaws JA. Endocrine-disrupting chemicals in ovarian function: effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction. 2011; 142: 63346.
  • 9
    Couse JF, Korach KS. Estrogen receptor-alpha mediates the detrimental effects of neonatal diethylstilbestrol (DES) exposure in the murine reproductive tract. Toxicology. 2004; 205: 5563.
  • 10
    Tokumoto T, Tokumoto M, Thomas P. Interactions of diethylstilbestrol (DES) and DES analogs with membrane progestin receptor-alpha and the correlation with their nongenomic progestin activities. Endocrinology. 2007; 148: 345967.
  • 11
    Fischer T, Schomacker K, Schicha H. Diethylstilbestrol (DES) labeled with Auger emitters: potential radiopharmaceutical for therapy of estrogen receptor-positive tumors and their metastases? Int J Radiat Biol. 2008; 84: 111222.
  • 12
    Titus-Ernstoff L, Hatch EE, Hoover RN, et al. Long-term cancer risk in women given diethylstilbestrol (DES) during pregnancy. Br J Cancer. 2001; 84: 12633.
  • 13
    Maffini MV, Rubin BS, Sonnenschein C, et al. Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol. 2006; 254–255: 17986.
  • 14
    Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol. 2010; 24: 619.
  • 15
    Tokunaga E, Kimura Y, Mashino K, et al. Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer. 2006; 13: 13744.
  • 16
    Bouskine A, Nebout M, Brucker-Davis F, et al. Low doses of bisphenol A promote human seminoma cell proliferation by activating PKA and PKG via a membrane G-protein-coupled estrogen receptor. Environ Health Perspect. 2009; 117: 10538.
  • 17
    Watson CS, Jeng YJ, Hu G, et al. Estrogen- and xenoestrogen-induced ERK signaling in pituitary tumor cells involves estrogen receptor-alpha interactions with G protein-alphai and caveolin I. Steroids. 2012; 77: 42432.
  • 18
    Fenton SE. Endocrine-disrupting compounds and mammary gland development: early exposure and later life consequences. Endocrinology. 2006; 147: S1824.
  • 19
    Bergamasco AM, Eldridge M, Sanseverino J, et al. Bioluminescent yeast estrogen assay (BLYES) as a sensitive tool to monitor surface and drinking water for estrogenicity. J Environ Monit. 2011; 13: 328893.
  • 20
    Nadzialek S, Depiereux S, Mandiki SN, et al. In vivo biomarkers of estrogenicity: limitation of interpretation in wild environment. Arch Environ Contam Toxicol. 2011; 60: 4718.
  • 21
    An BS, Choi KC, Kang SK, et al. Novel Calbindin-D(9k) protein as a useful biomarker for environmental estrogenic compounds in the uterus of immature rats. Reprod Toxicol. 2003; 17: 3119.
  • 22
    Vo TT, Jeung EB. An evaluation of estrogenic activity of parabens using uterine calbindin-d9k gene in an immature rat model. Toxicol Sci. 2009; 112: 6877.
  • 23
    Dang VH, Choi KC, Hyun SH, et al. Induction of uterine calbindin-D9k through an estrogen receptor-dependent pathway following single injection with xenobiotic agents in immature rats. J Toxicol Environ Health A. 2007; 70: 17182.
  • 24
    Choi KC, Leung PC, Jeung EB. Biology and physiology of Calbindin-D9k in female reproductive tissues: involvement of steroids and endocrine disruptors. Reprod Biol Endocrinol. 2005; 3: 66.
  • 25
    Kousteni S, Han L, Chen JR, et al. Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest. 2003; 111: 165164.
  • 26
    Maffucci JA, Gore AC. Chapter 2: hypothalamic neural systems controlling the female reproductive life cycle gonadotropin-releasing hormone, glutamate, and GABA. Int Rev Cell Mol Biol. 2009; 274: 69127.
  • 27
    Gordon A, Garrido-Gracia JC, Aguilar R, et al. The ovary-mediated FSH attenuation of the LH surge in the rat involves a decreased gonadotroph progesterone receptor (PR) action but not PR expression. J Endocrinol. 2008; 196: 58392.
  • 28
    Simpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol. 2003; 86: 22530.
  • 29
    Lee HR, Kim TH, Choi KC. Functions and physiological roles of two types of estrogen receptors, ERalpha and ERbeta, identified by estrogen receptor knockout mouse. Lab Anim Res. 2012; 28: 716.
  • 30
    Berman JR. Physiology of female sexual function and dysfunction. Int J Impot Res. 2005; 17(Suppl 1): S4451.
  • 31
    Murono EP, Derk RC, de Leon JH. Octylphenol inhibits testosterone biosynthesis by cultured precursor and immature Leydig cells from rat testes. Reprod Toxicol. 2000; 14: 27588.
  • 32
    Johari H, Parhizkar Z, Talebi E. Effects of adenine on the pituitary-gonad axis in newborns rats. Pak J Biol Sci. 2008; 11: 24137.
  • 33
    Navratil AM, Knoll JG, Whitesell JD, et al. Neuroendocrine plasticity in the anterior pituitary: gonadotropin-releasing hormone-mediated movement in vitro and in vivo. Endocrinology. 2007; 148: 173644.
  • 34
    Ishida M, Takahashi W, Itoh S, et al. Estrogen actions on lactotroph proliferation are independent of a paracrine interaction with other pituitary cell types: a study using lactotroph-enriched cells. Endocrinology. 2007; 148: 31319.
  • 35
    Wang Z, Zhang X, Shen P, et al. A variant of estrogen receptor-{alpha}, hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci USA. 2006; 103: 90638.
  • 36
    Simoncini T, Mannella P, Fornari L, et al. Genomic and non-genomic effects of estrogens on endothelial cells. Steroids. 2004; 69: 53742.
  • 37
    Ambrosino C, Tarallo R, Bamundo A, et al. Identification of a hormone-regulated dynamic nuclear actin network associated with estrogen receptor alpha in human breast cancer cell nuclei. Mol Cell Proteomics. 2010; 9: 135267.
  • 38
    Huang J, Li X, Yi P, et al. Targeting estrogen responsive elements (EREs): design of potent transactivators for ERE-containing genes. Mol Cell Endocrinol. 2004; 218: 6578.
  • 39
    Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol. 2002; 80: 2318.
  • 40
    Levin ER. Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol. 2005; 19: 19519.
  • 41
    Jepsen K, Hermanson O, Onami TM, et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell. 2000; 102: 75363.
  • 42
    Suzuki T, Yu HP, Hsieh YC, et al. Estrogen-mediated activation of non-genomic pathway improves macrophages cytokine production following trauma-hemorrhage. J Cell Physiol. 2008; 214: 66272.
  • 43
    Revankar CM, Cimino DF, Sklar LA, et al. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005; 307: 162530.
  • 44
    Bjornstrom L, Sjoberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol. 2005; 19: 83342.
  • 45
    Gronemeyer H, Gustafsson JA, Laudet V. Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov. 2004; 3: 95064.
  • 46
    Green S, Walter P, Kumar V, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature. 1986; 320: 1349.
  • 47
    Mosselman S, Polman J, Dijkema R. ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett. 1996; 392: 4953.
  • 48
    Pike AC. Lessons learnt from structural studies of the oestrogen receptor. Best Pract Res Clin Endocrinol Metab. 2006; 20: 114.
  • 49
    McDonnell DP, Norris JD. Connections and regulation of the human estrogen receptor. Science. 2002; 296: 16424.
  • 50
    Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev. 2001; 81: 1269304.
  • 51
    Williams K, McKinnell C, Saunders PT, et al. Neonatal exposure to potent and environmental oestrogens and abnormalities of the male reproductive system in the rat: evidence for importance of the androgen-oestrogen balance and assessment of the relevance to man. Hum Reprod Update. 2001; 7: 23647.
  • 52
    Halon A, Nowak-Markwitz E, Maciejczyk A, et al. Loss of estrogen receptor beta expression correlates with shorter overall survival and lack of clinical response to chemotherapy in ovarian cancer patients. Anticancer Res. 2011; 31: 7118.
  • 53
    Samudio I, Vyhlidal C, Wang F, et al. Transcriptional activation of deoxyribonucleic acid polymerase alpha gene expression in MCF-7 cells by 17 beta-estradiol. Endocrinology. 2001; 142: 10008.
  • 54
    Hong EJ, Choi KC, Jeung EB. Maternal-fetal transfer of endocrine disruptors in the induction of Calbindin-D9k mRNA and protein during pregnancy in rat model. Mol Cell Endocrinol. 2003; 212: 6372.
  • 55
    Zierau O, Kolba S, Olff S, et al. Analysis of the promoter-specific estrogenic potency of the phytoestrogens genistein, daidzein and coumestrol. Planta Med. 2006; 72: 1846.
  • 56
    Watson CS, Bulayeva NN, Wozniak AL, et al. Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids. 2007; 72: 12434.
  • 57
    Manavathi B, Kumar R. Steering estrogen signals from the plasma membrane to the nucleus: two sides of the coin. J Cell Physiol. 2006; 207: 594604.
  • 58
    Thomas P, Dong J. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol. 2006; 102: 1759.
  • 59
    Dong S, Terasaka S, Kiyama R. Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells. Environ Pollut. 2010; 159: 2128.
  • 60
    Vivacqua A, Bonofiglio D, Recchia AG, et al. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol Endocrinol. 2006; 20: 63146.
  • 61
    Albanito L, Lappano R, Madeo A, et al. G-protein-coupled receptor 30 and estrogen receptor-alpha are involved in the proliferative effects induced by atrazine in ovarian cancer cells. Environ Health Perspect. 2008; 116: 164855.
  • 62
    Pupo M, Pisano A, Lappano R, et al. Bisphenol a induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2012; 120: 117782.
  • 63
    Harvey PW, Johnson I. Approaches to the assessment of toxicity data with endpoints related to endocrine disruption. J Appl Toxicol. 2002; 22: 2417.
  • 64
    Sanderson JT. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci. 2006; 94: 321.
  • 65
    Li Y, Burns KA, Arao Y, et al. Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor alpha and beta in vitro. Environ Health Perspect. 2012; 120: 102935.
  • 66
    Moral R, Santucci-Pereira J, Wang R, et al. In utero exposure to butyl benzyl phthalate induces modifications in the morphology and the gene expression profile of the mammary gland: an experimental study in rats. Environ Health. 2011; 10: 5.
  • 67
    Lemaire G, Mnif W, Mauvais P, et al. Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci. 2006; 79: 11609.
  • 68
    Mussi P, Ciana P, Raviscioni M, et al. Activation of brain estrogen receptors in mice lactating from mothers exposed to DDT. Brain Res Bull. 2005; 65: 2417.
  • 69
    Villa R, Bonetti E, Penza ML, et al. Target-specific action of organochlorine compounds in reproductive and nonreproductive tissues of estrogen-reporter male mice. Toxicol Appl Pharmacol. 2004; 201: 13748.
  • 70
    Al-Saleh I, Coskun S, El-Doush I, et al. Outcome of in-vitro fertilization treatment and DDT levels in serum and follicular fluid. Med Sci Monit. 2009; 15: BR32033.
  • 71
    Al-Saleh I, Al-Doush I, Alsabbaheen A, et al. Levels of DDT and its metabolites in placenta, maternal and cord blood and their potential influence on neonatal anthropometric measures. Sci Total Environ. 2011; 416: 6274.
  • 72
    Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol. 2011; 127: 2734.
  • 73
    Singh S, Li SS. Bisphenol A and phthalates exhibit similar toxicogenomics and health effects. Gene. 2011; 494: 8591.
  • 74
    Gaido KW, Maness SC, McDonnell DP, et al. Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: structure-activity studies. Mol Pharmacol. 2000; 58: 8528.
  • 75
    Cao X, Wang A, Wang C, et al. Effects of surfactin on proliferation, apoptosis and cytoskeleton in human breast cancer MCF-7 cells. Sheng Wu Gong Cheng Xue Bao. 2009; 25: 170510.
  • 76
    Park SH, Kim KY, An BS, et al. Cell growth of ovarian cancer cells is stimulated by xenoestrogens through an estrogen-dependent pathway, but their stimulation of cell growth appears not to be involved in the activation of the mitogen-activated protein kinases ERK-1 and p38. J Reprod Dev. 2009; 55: 239.
  • 77
    Wetherill YB, Akingbemi BT, Kanno J, et al. In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol. 2007; 24: 17898.
  • 78
    Nah WH, Park MJ, Gye MC. Effects of early prepubertal exposure to bisphenol A on the onset of puberty, ovarian weights, and estrous cycle in female mice. Clin Exp Reprod Med. 2012; 38: 7581.
  • 79
    Munoz-de-Toro M, Markey CM, Wadia PR, et al. Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology. 2005; 146: 413847.
  • 80
    Rubin BS, Murray MK, Damassa DA, et al. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001; 109: 67580.
  • 81
    Zhou R, Zhang Z, Zhu Y, et al. Deficits in development of synaptic plasticity in rat dorsal striatum following prenatal and neonatal exposure to low-dose bisphenol A. Neuroscience. 2009; 159: 16171.
  • 82
    Rudel RA, Camann DE, Spengler JD, et al. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol. 2003; 37: 454353.
  • 83
    Rey Vazquez G, Meijide FJ, Da Cuna RH, et al. Exposure to waterborne 4-tert-octylphenol induces vitellogenin synthesis and disrupts testis morphology in the South American freshwater fish Cichlasoma dimerus (Teleostei, Perciformes). Comp Biochem Physiol C Toxicol Pharmacol. 2009; 150: 298306.
  • 84
    Calafat AM, Kuklenyik Z, Reidy JA, et al. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect. 2005; 113: 3915.
  • 85
    Kang NH, Hwang KA, Kim TH, et al. Induced growth of BG-1 ovarian cancer cells by 17beta-estradiol or various endocrine disrupting chemicals was reversed by resveratrol via downregulation of cell cycle progression. Mol Med Report. 2012; 6: 1516.
  • 86
    Choi JS, Oh JH, Park HJ, et al. miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol. Reprod Biol Endocrinol. 2011; 9: 126.
  • 87
    Lee HJ, Chattopadhyay S, Gong EY, et al. Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicol Sci. 2003; 75: 406.
  • 88
    Kwack SJ, Kwon O, Kim HS, et al. Comparative evaluation of alkylphenolic compounds on estrogenic activity in vitro and in vivo. J Toxicol Environ Health A. 2002; 65: 41931.
  • 89
    Zama AM, Uzumcu M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology. 2009; 150: 468191.
  • 90
    Akingbemi BT, Ge RS, Klinefelter GR, et al. A metabolite of methoxychlor, 2,2-bis(p-hydroxyphenyl)-1,1, 1-trichloroethane, reduces testosterone biosynthesis in rat leydig cells through suppression of steady-state messenger ribonucleic acid levels of the cholesterol side-chain cleavage enzyme. Biol Reprod. 2000; 62: 5718.
  • 91
    Harvey CN, Esmail M, Wang Q, et al. Effect of the methoxychlor metabolite HPTE on the rat ovarian granulosa cell transcriptome in vitro. Toxicol Sci. 2009; 110: 95106.
  • 92
    Satar S, Sebe A, Alpay NR, et al. Unintentional endosulfan poisoning. Bratisl Lek Listy. 2009; 110: 3013.
  • 93
    Yavuz Y, Yurumez Y, Kucuker H, et al. Two cases of acute endosulfan toxicity. Clin Toxicol (Phila). 2007; 45: 5302.
  • 94
    Sarma K, Pal AK, Sahu NP, et al. Biochemical and histological changes in the brain tissue of spotted murrel, Channa punctatus (Bloch), exposed to endosulfan. Fish Physiol Biochem. 2010; 36: 597603.
  • 95
    Ozmen O, Sahinduran S, Mor F. Pathological and immunohistochemical examinations of the pancreas in subacute endosulfan toxicity in rabbits. Pancreas. 2009; 39: 36770.
  • 96
    Singh ND, Sharma AK, Dwivedi P, et al. Experimentally induced citrinin and endosulfan toxicity in pregnant Wistar rats: histopathological alterations in liver and kidneys of fetuses. J Appl Toxicol. 2008; 28: 9017.
  • 97
    Scremin OU, Chialvo DR, Lavarello S, et al. The environmental pollutant endosulfan disrupts cerebral cortical function at low doses. Neurotoxicology. 2010; 32: 317.
  • 98
    Dumbrepatil AB, Lee SG, Chung SJ, et al. Development of a nanoparticle-based FRET sensor for ultrasensitive detection of phytoestrogen compounds. Analyst. 2010; 135: 287986.
  • 99
    Zhao E, Mu Q. Phytoestrogen biological actions on Mammalian reproductive system and cancer growth. Sci Pharm. 2011; 79: 120.
  • 100
    Sotoca AM, Gelpke MD, Boeren S, et al. Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2010; 10: M110 002170.
  • 101
    Penza M, Montani C, Romani A, et al. Genistein affects adipose tissue deposition in a dose-dependent and gender-specific manner. Endocrinology. 2006; 147: 574051.
  • 102
    Hu Y, Li DM, Han XD. Analysis of combined effects of nonylphenol and Monobutyl phthalate on rat Sertoli cells applying two mathematical models. Food Chem Toxicol. 2011; 50: 45763.
  • 103
    Park MA, Hwang KA, Lee HR, et al. Cell growth of BG-1 ovarian cancer cells is promoted by di-n-butyl phthalate and hexabromocyclododecane via upregulation of the cyclin D and cyclin-dependent kinase-4 genes. Mol Med Report. 2011; 5: 7616.
  • 104
    Vandenberg LN, Hauser R, Marcus M, et al. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007; 24: 13977.
  • 105
    Vandenberg LN, Maffini MV, Wadia PR, et al. Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology. 2007; 148: 11627.
  • 106
    Woodruff TJ, Carlson A, Schwartz JM, et al. Proceedings of the Summit on Environmental Challenges to Reproductive Health and Fertility: executive summary. Fertil Steril. 2008; 89: 281300.
  • 107
    Hsu PC, Huang W, Yao WJ, et al. Sperm changes in men exposed to polychlorinated biphenyls and dibenzofurans. JAMA. 2003; 289: 29434.
  • 108
    Bonde JP. Male reproductive organs are at risk from environmental hazards. Asian J Androl. 2009; 12: 1526.
  • 109
    Rignell-Hydbom A, Rylander L, Giwercman A, et al. Exposure to CB-153 and p, p'-DDE and male reproductive function. Hum Reprod. 2004; 19: 206675.
  • 110
    Sharpe RM. Pathways of endocrine disruption during male sexual differentiation and masculinization. Best Pract Res Clin Endocrinol Metab. 2006; 20: 91110.
  • 111
    Bulayeva NN, Watson CS. Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways. Environ Health Perspect. 2004; 112: 14817.
  • 112
    Lee HR, Hwang KA, Park MA, et al. Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway. Int J Mol Med. 2012; 29: 88390.
  • 113
    Li X, Zhang S, Safe S. Activation of kinase pathways in MCF-7 cells by 17beta-estradiol and structurally diverse estrogenic compounds. J Steroid Biochem Mol Biol. 2006; 98: 12232.
  • 114
    Weber Lozada K, Keri RA. Bisphenol A increases mammary cancer risk in two distinct mouse models of breast cancer. Biol Reprod. 2011; 85: 4907.
  • 115
    Lamartiniere CA, Jenkins S, Betancourt AM, et al. Exposure to the Endocrine Disruptor Bisphenol A Alters Susceptibility for Mammary Cancer. Horm Mol Biol Clin Investig. 2011; 5: 4552.
  • 116
    Cheng J, Lee EJ, Madison LD, et al. Expression of estrogen receptor beta in prostate carcinoma cells inhibits invasion and proliferation and triggers apoptosis. FEBS Lett. 2004; 566: 16972.
  • 117
    Huyghe E, Matsuda T, Thonneau P. Increasing incidence of testicular cancer worldwide: a review. J Urol. 2003; 170: 511.
  • 118
    Hardell L, Bavel B, Lindstrom G, et al. In utero exposure to persistent organic pollutants in relation to testicular cancer risk. Int J Androl. 2006; 29: 22834.
  • 119
    Prins GS, Birch L, Tang WY, et al. Developmental estrogen exposures predispose to prostate carcinogenesis with aging. Reprod Toxicol. 2007; 23: 37482.
  • 120
    Ho SM, Tang WY, Belmonte de Frausto J, et al. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006; 66: 562432.
  • 121
    Keri RA, Ho SM, Hunt PA, et al. An evaluation of evidence for the carcinogenic activity of bisphenol A. Reprod Toxicol. 2007; 24: 24052.
  • 122
    Skoldenberg EG, Larsson A, Jakobson A, et al. The angiogenic growth factors HGF and VEGF in serum and plasma from neuroblastoma patients. Anticancer Res. 2009; 29: 33119.
  • 123
    Wang D, Weng Q, Zhang L, et al. VEGF and Bcl-2 interact via MAPKs signaling pathway in the response to hypoxia in neuroblastoma. Cell Mol Neurobiol. 2009; 29: 391401.
  • 124
    Zhu H, Xiao X, Zheng J, et al. Growth-promoting effect of bisphenol A on neuroblastoma in vitro and in vivo. J Pediatr Surg. 2009; 44: 67280.
  • 125
    Zheng J, Xiao X, Liu J, et al. Growth-promoting effect of environmental endocrine disruptors on human neuroblastoma SK-N-SH cells. Environ Toxicol Pharmacol. 2007; 24: 18993.
  • 126
    Miyakoshi T, Miyajima K, Takekoshi S, et al. The influence of endocrine disrupting chemicals on the proliferation of ERalpha knockdown-human breast cancer cell line MCF-7; new attempts by RNAi technology. Acta Histochem Cytochem. 2009; 42: 238.
  • 127
    Gore AC. Neuroendocrine systems as targets for environmental endocrine-disrupting chemicals. Fertil Steril. 2008; 89: e1012.
  • 128
    Rasier G, Parent AS, Gerard A, et al. Mechanisms of interaction of endocrine-disrupting chemicals with glutamate-evoked secretion of gonadotropin-releasing hormone. Toxicol Sci. 2008; 102: 3341.
  • 129
    Herbstman J, Apelberg BJ, Witter FR, et al. Maternal, infant, and delivery factors associated with neonatal thyroid hormone status. Thyroid. 2008; 18: 6776.
  • 130
    Herbstman JB, Sjodin A, Apelberg BJ, et al. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) and neonatal thyroid hormone levels. Environ Health Perspect. 2008; 116: 137682.
  • 131
    Newbold RR, Padilla-Banks E, Snyder RJ, et al. Developmental exposure to endocrine disruptors and the obesity epidemic. Reprod Toxicol. 2007; 23: 2906.
  • 132
    Filipin Mdel V, Caetano LC, Brazao V, et al. DHEA and testosterone therapies in Trypanosoma cruzi-infected rats are associated with thymic changes. Res Vet Sci. 2010; 89: 98103.
  • 133
    Frawley R, White K Jr, Brown R, et al. Gene expression alterations in immune system pathways in the thymus after exposure to immunosuppressive chemicals. Environ Health Perspect. 2010; 119: 3716.
  • 134
    Forawi HA, Tchounwou PB, McMurray RW. Xenoestrogen modulation of the immune system: effects of dichlorodiphenyltrichloroethane (DDT) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Rev Environ Health. 2004; 19: 113.
  • 135
    Lang IA, Galloway TS, Scarlett A, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008; 300: 130310.
  • 136
    Quesada I, Fuentes E, Viso-Leon MC, et al. Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB. FASEB J. 2002; 16: 16713.
  • 137
    Heppell SA, Denslow ND, Folmar LC, et al. Universal assay of vitellogenin as a biomarker for environmental estrogens. Environ Health Perspect. 1995; 103(Suppl 7): 915.
  • 138
    Ren L, Marquardt MA, Lech JJ. Estrogenic effects of nonylphenol on pS2, ER and MUC1 gene expression in human breast cancer cells-MCF-7. Chem Biol Interact. 1997; 104: 5564.
  • 139
    Miller S, Kennedy D, Thomson J, et al. A rapid and sensitive reporter gene that uses green fluorescent protein expression to detect chemicals with estrogenic activity. Toxicol Sci. 2000; 55: 6977.
  • 140
    Shelby MD, Newbold RR, Tully DB, et al. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ Health Perspect. 1996; 104: 1296300.
  • 141
    Ciana P, Di Luccio G, Belcredito S, et al. Engineering of a mouse for the in vivo profiling of estrogen receptor activity. Mol Endocrinol. 2001; 15: 110413.
  • 142
    Dang VH, Choi KC, Hyun SH, et al. Analysis of gene expression profiles in the offspring of rats following maternal exposure to xenoestrogens. Reprod Toxicol. 2007; 23: 4254.
  • 143
    Dang VH, Choi KC, Jeung EB. Estrogen receptors are involved in xenoestrogen induction of growth hormone in the rat pituitary gland. J Reprod Dev. 2009; 55: 20613.
  • 144
    Choi KC, Jeung EB. Molecular mechanism of regulation of the calcium-binding protein calbindin-D9k, and its physiological role(s) in mammals: a review of current research. J Cell Mol Med. 2008; 12: 40920.
  • 145
    Dang VH, Choi KC, Jeung EB. Membrane-impermeable estrogen is involved in regulation of calbindin-D9k expression via non-genomic pathways in a rat pituitary cell line, GH3 cells. Toxicol In Vitro. 2010; 24: 122936.
  • 146
    L'Horset F, Blin C, Colnot S, et al. Calbindin-D9k gene expression in the uterus: study of the two messenger ribonucleic acid species and analysis of an imperfect estrogen-responsive element. Endocrinology. 1994; 134: 118.
  • 147
    L'Horset F, Blin C, Brehier A, et al. Estrogen-induced calbindin-D 9k gene expression in the rat uterus during the estrous cycle: late antagonistic effect of progesterone. Endocrinology. 1993; 132: 48995.
  • 148
    Kim YR, Jung EM, Choi KC, et al. Synergistic effects of octylphenol and isobutyl paraben on the expression of calbindin-Dk in GH3 rat pituitary cells. Int J Mol Med. 2011; 29: 294302.
  • 149
    An BS, Kang SK, Shin JH, et al. Stimulation of calbindin-D(9k) mRNA expression in the rat uterus by octyl-phenol, nonylphenol and bisphenol. Mol Cell Endocrinol. 2002; 191: 17786.
  • 150
    Jung YW, Hong EJ, Choi KC, et al. Novel progestogenic activity of environmental endocrine disruptors in the upregulation of calbindin-D9k in an immature mouse model. Toxicol Sci. 2005; 83: 7888.