The aim of this study was to analyse the effects of species geographical and environmental ranges on the predictive performances of species distribution models (SDMs). We explored the usefulness of ensemble modelling approaches and tested whether species attributes influenced the outcomes of such approaches. Eight SDMs were used to model the current distribution of 35 fish species at 1110 stream sections in France. We first quantified the consensus among the resulting set of predictions for each fish species. Next, we created an average model by taking the average of the individual model predictions and tested whether the average model improved the predictive performances of single SDMs. Lastly, we described the ranges of fish species along four gradients: latitudinal, thermal, stream gradient (i.e. upstream-downstream) and elevation. After accounting for the effects of phylogenetic relatedness and species prevalence, these four species attributes were related to the observed variations in both consensus among SDMs and predictive performances by using generalized estimation equations. Our results highlight the usefulness of ensemble approaches for identifying geographical areas of agreement among predictions. Although the geographical extent of species had no effect on the performances of SDMs, we demonstrated that more consensual and accurate predictions were obtained for species with low thermal and elevation ranges, validating the hypothesis that specialist species yield models with higher accuracy than generalist ones. We emphasized that significant improvements in the accuracy of SDMs can be achieved by using an average model. Furthermore, these improvements were higher for species with smaller ranges along the four gradients studied. The geographical extent and ranges of species along environmental gradients provide promising insights into our understanding of uncertainties in species distribution modelling.