SEARCH

SEARCH BY CITATION

The geographic range of a species is influenced by past phylogenetic and biogeographic patterns. However, other historical interactions, including the interplay between life history and geography, are also likely involved. Therefore, the range size of a species can be explained on the basis of niche-breadth or dispersal related hypotheses, and previous work on European butterflies suggests that both, under the respective guise of ecological specialisation and colonising ability may apply. In the present study, data from 205 species of butterflies from the Iberian peninsula were processed through multiple regression analyses to test for correlations between geographic range size, life history traits and geographic features of the species distribution types. In addition, the percentage of variance explained by the subsets of variables analyzed in the study, with and without control for phylogenetic effects was tested. Despite a complex pattern of bivariate correlations, we found that larval polyphagy was the single best correlate of range size, followed by dispersal. Models that combined both life history traits and geographic characteristics performed better than models generated independently. The combined variables explained at least 39% of the variance. Bivariate correlations between range size and body size, migratory habits or egg size primarily reflected taxonomic patterning and reciprocal correlations with larval diet breadth and adult phenology. Therefore, aspects of niche breadth i.e. potential larval diet breadth emerged as the most influential determinants of range size. However, the relationships between these types of ecological traits and biogeographic history must still be considered when associations between life history and range size are of interest.