SEARCH

SEARCH BY CITATION

References

  • Adams, M. J. 1985. Speciation of the pronophiline butterflies (Satyridae) of the northern Andes. J. Res. Lepid. Suppl. 1: 3349.
  • Adams, M. J. 1986. Pronophiline butterflies (Satyridae) of the 3 Andean cordilleras of Colombia. Zool. J. Linn. Soc. 87: 235320.
  • Adams, M. J. and Bernard, G. I. 1981. Pronophiline butterflies (Satyridae) of the Cordillera De Merida, Venezuela. Zool. J. Linn. Soc. 71: 343372.
  • Aldous, D. J. 2001. Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Stat. Sci. 16: 2334.
  • Ane, C. et al. 2007. Bayesian estimation of concordance among gene trees. Mol. Biol. Evol. 24: 412426.
  • Barraclough, T. G. and Vogler, A. P. 2000. Detecting the geographical pattern of speciation from species-level phylogenies. Am. Nat. 155: 419434.
  • Bird, J. M. and Hodkinson, I. D. 2005. What limits the altitudinal distribution of Craspedolepta species (Sternorrhyncha: Psylloidea) on fireweed?. Ecol. Entomol. 30: 510520.
  • Blomberg, S. P. et al. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717745.
  • Braun, M. J. et al. 2005. Avian speciation in the Pantepui: the case of the roraiman antbird (Percnostola [Schistocichla] “Leucostigmasaturata). Condor 107: 327341.
  • Brown, J. H. et al. 1996. The geographic range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27: 597623.
  • Buse, A. et al. 2001. Arthropod distribution on an alpine elevational gradient: the relationship with preferred temperature and cold tolerance. Eur. J. Entomol. 98: 301309.
  • Chapman, F. M. 1917. The distributin of bird life in Colombia. Bull. Am. Mus. Nat. Hist. 31: 1169.
  • Cordell, S. et al. 1999. Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and delta C-13 along an altitudinal gradient. Funct. Ecol. 13: 811818.
  • Degnan, J. H. and Rosenberg, N. A. 2006. Discordance of species trees with their most likely gene trees. PLoS Genet. 5: e68.
  • DeVries, P. J. 1987. The butterflies of Costa Rica and their natural history. Volume 1: Papilionidae, Pieridae, Nymphalidae. Princeton Univ. Press.
  • Doebeli, M. and Dieckmann, U. 2003. Speciation along environmental gradients. Nature 421: 259264.
  • Doebeli, M. et al. 2005. What we have also learned: adaptive speciation is theoretically plausible. Evolution 59: 691695.
  • Drummond, A. J. and Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7: 214.
  • Elias, M. et al. 2009. Out of the Andes: patterns of diversification in clearwing butterflies. Mol. Ecol. 18: 17161729.
  • Erelli, M. C. et al. 1998. Altitudinal patterns in host suitability for forest insects. Oecologia 117: 133142.
  • Fitzpatrick, B. M. and Turrelli, M. 2006. The geography of mammalian speciation: mixed signals from phylogenies and range maps. Evolution 60: 601615.
  • Fjeldsa, J. and Lovett, J. C. 1997. Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodivers. Conserv. 6: 325346.
  • Garzione, C. N. et al. 2006. Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth Planetary Sci. Lett. 241: 543556.
  • Gregory-Wodzicki, K. M. 2000. Uplift history of the central and northern Andes: a review. Geol. Soc. Am. Bull. 112: 10911105.
  • Grubb, P. J. 1977. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu. Rev. Ecol. Syst. 8: 83107.
  • Heller, H. C. 1971. Altitudinal zonation of chipmunks (Eutamias): interspecific aggression. Ecology 52: 312319.
  • Heller, H. C. and Poulson, T. 1972. Altitudinal zonation of chipmunks (Eutamias): adaptations to aridity and high temperature. Am. Midl. Nat. 87: 296313.
  • Holt, R. D. and Keitt, T. H. 2005. Species’ borders: a unifying theme in ecology. Oikos 108: 36.
  • Huelsenbeck, J. P. and Ronquist, F. 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754755.
  • Janzen, D. H. 1967. Why mountain passes are higher in the tropics. Am. Nat. 101: 233249.
  • Kembel, S. W. et al. 2009. R tools for integrating phylgenies and ecology. R package ver. 1.0-0 <http:/picante.r-forge.r-project.org>.
  • Kirkpatrick, M. and Barton, N. H. 1997. Evolution of a species’ range. Am. Nat. 150: 123.
  • Kubatko, L. and Degnan, J. 2007. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst. Biol. 56: 1724.
  • Lamas, G. (ed.), Checklist: part 4A. Hesperioidea – Papilionoidea. Atlas of Neotropical Lepidoptera. Association for Tropical Lepidoptera/Scientific Publ 2004.
  • MacArthur, R. 1972. Geographical ecology: patterns in the distributions of species. Harper and Rowe.
  • Maddison, D. R. and Maddison, W. P. 2000. MacClade version 4: analysis of phylogeny and character evolution <www.mesquiteproject.org>.
  • McCain, C. 2009. Vertebrate range sizes indicate that mountains may be ‘higher’ in the tropics. Ecol. Lett. 12: 550560.
  • Miller, M. et al. 2009. The CIPRES portals. CIPRES <www.phylo.org/sub_sections/portal>.
  • Morecroft, M. D. and Woodward, F. I. 1996. Experiments on the cause of altitudinal differences in the leaf nutrient contents, size and delta C-13 of Alchemill alpina. New Phytol. 132: 471479.
  • Moritz, C. et al. 2000. Diversification of rainforest faunas: an integrated molecular approach. Annu. Rev. Ecol. Syst. 31: 533563.
  • Nel, A. et al. 1993. Un nouveau Lepidoptere Satyrinae fossile de l'Oligocene ud sud-est de la France (Insecta, Lepidoptera, Nymphalidae). Linn. Belg. 14: 2036.
  • Nylander, J. A. A. et al. 2007. AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581583.
  • Paradis, E. et al. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289290.
  • Peña, C. and Wahlberg, N. 2008. Prehistorical climate change increased diversification of a group of butterflies. Biol. Lett. 4: 274278.
  • Peña, C. et al. 2006. Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data. Mol. Phylogenet. Evol. 40: 2949.
  • Picard, D. et al. 2008. Direction and timing of uplift propagation in the Peruvian Andes deduced from molecular phylogenetics of highland biotaxa. Earth Planetary Sci. Lett. 271: 326336.
  • Pollard, D. A. et al. 2006. Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. PLoS Genet. 10: 173.
  • Posada, D. and Crandall, K. A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817818.
  • Pyrcz, T. W. 2004. Pronophiline butterflies of the highlands of Chachapoyas in northern Peru: faunal survey, diversity and distribution patterns (Lepidoptera, Nymphalidae, Satyrinae). Genus 15: 455622.
  • Pyrcz, T. W. and Wojtusiak, J. 2002. The vertical distribution of pronophiline butterflies (Nymphalidae, Satyrinae) along an elevational transect in Monte Zerpa (Cordillera de Merida, Venezuela) with remarks on their diversity and parapatric distribution. Global Ecol. Biogeogr. 11: 211221.
  • Pyrcz, T. W. et al. 1999. Contribution to the knowledge of Ecuadorian Pronophilini. Part III. Three new species and five new subspecies of Lymanopoda (Lepidoptera: Nymphalidae: Satyrinae). Genus 10: 497522.
  • Remsen, J. V. J. 1984. High incidence of “Leapfrog” pattern of geographic variation in Andean birds: implications for the speciation process. Science 224: 171173.
  • Ronquist, F. and Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.
  • Schluter, D. 1996. Ecological causes of adaptive radiation. Am. Nat. 148: S40S64.
  • Schneider, C. J. et al. 1999. A test of alternative models of diversification in tropical rainforests: ecological gradients vs. rainforest refugia. Proc. Nat. Acad. Sci. USA 96: 1386913873.
  • Schulte II, J. A. et al. 2000. Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal. Biol. J. Linn. Soc. 69: 75102.
  • Sempere, T. et al. 2008. New insights into Andean evolution: an introduction to contributions from the 6th ISAG symposium (Barcelona, 2005). Tectonophysics 459: 113.
  • Terborgh, J. 1971. Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba, Peru. Ecology 52: 2340.
  • Voelker, G. 1999. Dispersal, vicariance, and clocks: historical biogeography and speciation in a cosmopolitan passerine genus (Anthus: Motacillidae). Evolution 53: 15361552.
  • Wahlberg, N. and Wheat, C. 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Syst. Biol. 57: 231242.
  • Wahlberg, N. et al. 2009. Nymphalid butterflies diversify following near demise at the cretaceous/terriary boundary. Proc. R. Soc. B 276: 42954302.
  • Wilgenbusch, J. C. et al. 2004. AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference <http://king2.csit.fsu.edu/CEBProjects/awty/awty-start.php>.
  • Yule, G. U. 1924. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis. Phil. Trans. R. Soc. B 213: 2187.