Cited in:


This article has been cited by:

  1. 1
    Abigail E. Cahill, Matthew E. Aiello-Lammens, M. Caitlin Fisher-Reid, Xia Hua, Caitlin J. Karanewsky, Hae Yeong Ryu, Gena C. Sbeglia, Fabrizio Spagnolo, John B. Waldron, John J. Wiens, Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change, Journal of Biogeography, 2014, 41, 3
  2. 2
    J. Verdú-Ricoy, P. Iraeta, A. Salvador, J. A. Díaz, Phenotypic responses to incubation conditions in ecologically distinct populations of a lacertid lizard: a tale of two phylogeographic lineages, Journal of Zoology, 2014, 292, 3
  3. 3
    Mark C. Urban, Jonathan L. Richardson, Nicole A. Freidenfelds, Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change, Evolutionary Applications, 2014, 7, 1
  4. 4
    Zheng Wang, Hong-Liang Lu, Li Ma, Xiang Ji, Viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation, Oecologia, 2014, 174, 3, 639


  5. 5
    C. Monasterio, L. P. Shoo, A. Salvador, P. Iraeta, J. A. Díaz, High temperature constrains reproductive success in a temperate lizard: implications for distribution range limits and the impacts of climate change, Journal of Zoology, 2013, 291, 2
  6. 6
    Brett R. Scheffers, Rebecca M. Brunner, Sara D. Ramirez, Luke P. Shoo, Arvin Diesmos, Stephen E. Williams, Thermal Buffering of Microhabitats is a Critical Factor Mediating Warming Vulnerability of Frogs in the Philippine Biodiversity Hotspot, Biotropica, 2013, 45, 5
  7. 7
    T. Rodríguez-Díaz, F. Braña, Altitudinal variation in egg retention and rates of embryonic development in oviparous Zootoca vivipara fits predictions from the cold-climate model on the evolution of viviparity, Journal of Evolutionary Biology, 2012, 25, 9
  8. 8
    Hedvig K. Nenzén, Rebecca M. Swab, David A. Keith, Miguel B. Araújo, demoniche – an R-package for simulating spatially-explicit population dynamics, Ecography, 2012, 35, 7