SEARCH

SEARCH BY CITATION

Top predators need to develop optimal strategies of resources and habitats utilization in order to optimize their foraging success. At the individual scale, a predator has to maximize his intake of food while minimizing his cost of foraging to optimize his energetic gain. At the ecosystem scale, we hypothesized that foraging strategies of predators also respond to their general energetic constraints. Predators with energetically costly lifestyles may be constrained to select high quality habitats whereas more phlegmatic predators may occupy both low and high quality habitats. The objectives of this study were 1) to investigate predator responses to heterogeneity in habitat quality with reference to their energetic strategies and 2) to evaluate their responses to contemporaneous versus averaged habitat quality. We collected cetacean and seabird data from an aerial survey in the Southwest Indian Ocean, a region characterized by heterogeneous oceanographic conditions. We classified cetaceans and seabirds into energetic guilds and described their habitats using remotely sensed covariates at contemporaneous and time-averaged resolutions and static covariates. We used generalized additive models to predict their habitats at the regional scale. Strategies of habitat utilization appeared in accordance with predators energetic constraints. Cetaceans responded to the heterogeneity in habitat quality, with higher densities predicted in more productive areas. However, the costly Delphininae appeared to be more dependent on habitat quality (showing a 1-to-13 ratio between the lowest and highest density sectors) than the more phlegmatic sperm and beaked whales (showing only a 1-to-3 ratio). For seabirds, predictions primarily reflected colony locations, although the colony effect was stronger for costly seabirds. Moreover, our results suggest that predators may respond better to persistent oceanographic features. To provide a third dimension to habitat quality, cetacean strategies of utilization of the vertical habitat could be related to the distribution of micronekton in the water column.