SEARCH

SEARCH BY CITATION

The rapid global decline of amphibian population is alarming because many occur for apparently unknown or enigmatic reasons, even inside protected areas (PAs). Some studies have predicted the effects of climate change on amphibians’ distribution and extinction, but the relationship and consequences of climate change to the phylogenetic structure of amphibian assemblages remain obscure. By applying robust techniques for ecological niche modeling and a cutting-edge approach on community phylogenetics, here, we evaluate how climate change affects the geographical pattern of amphibian species richness and phylogenetic diversity in the Atlantic Forest Biodiversity Hotspot, Brazil, as well as how the phylogenetic composition of amphibian assemblages respond to climate change. We found that most species contracted their ranges and that such responses are clade specific. Basal amphibian clades (e.g. Gymnophiona and Pipidae) were positively affected by climate change, whereas late-divergent clades (e.g. Cycloramphidae, Centrolenidae, Eleutherodactylidae, Microhylidae) were severely impacted. Identifying major changes in the phylogenetic pool represents a first step towards a better understanding of how assembly processes related to climate change will affect ecological communities. A deep analysis of the impacts of climate change not only on species, but also on the evolutionary relationships among species might foster the discussion on clade-level conservation priorities for this imperiled fauna.