• 1
    Campisi J. Replicative senescence: an old lives’ tale? Cell 1996: 84: 497500.
  • 2
    Beausejour C M, Krtolica A, Galimi F et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 2003: 22: 42124222.
  • 3
    Bond J A, Wyllie F S, Wynford-Thomas D. Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 1994: 9: 18851889.
  • 4
    Ramirez R D, Herbert B S, Vaughan M B et al. Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Oncogene 2003: 22: 433444.
  • 5
    Rheinwald J G, Hahn W C, Ramsey M R et al. A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol Cell Biol 2002: 22: 51575172.
  • 6
    Shay J W, Pereira-Smith O M, Wright W E. A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 1991: 196: 3339.
  • 7
    Greider C W. Telomere length regulation. Annu Rev Biochem 1996: 65: 337365.
  • 8
    Makarov V L, Hirose Y, Langmore J P. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 1997: 88: 657666.
  • 9
    Griffith J D, Comeau L, Rosenfield S et al. Mammalian telomeres end in a large duplex loop. Cell 1999: 97: 503514.
  • 10
    De Lange T. Protection of mammalian telomeres. Oncogene 2002: 21: 532540.
  • 11
    Harrington L, Robinson M O. Telomere dysfunction: multiple paths to the same end. Oncogene 2002: 21: 592597.
  • 12
    Karlseder J, Smogorzewska A, De Lange T. Senescence induced by altered telomere state, not telomere loss. Science 2002: 295: 24462449.
  • 13
    Karlseder J, Broccoli D, Dai Y, Hardy S, De Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999: 283: 13211325.
  • 14
    Takai H, Smogorzewska A, De Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol 2003: 13: 15491556.
  • 15
    Verdun R E, Crabbe L, Haggblom C, Karlseder J. Functional human telomeres are recognized as DNA damage in g2 of the cell cycle. Mol Cell 2005: 20: 551561.
  • 16
    Verdun R E, Karlseder J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 2006: 127: 709720.
  • 17
    Park H Y, Gilchrest B A. Signaling pathways mediating melanogenesis. Cell Mol Biol (Noisy-le-grand) 1999: 45: 919930.
  • 18
    Abdel-Malek Z, Swope V, Collins C, Boissy R, Zhao H, Nordlund J. Contribution of melanogenic proteins to the heterogeneous pigmentation of human melanocytes. J Cell Sci 1993: 4: 13231331.
  • 19
    Iwata M, Corn T, Iwata S, Everett M A, Fuller B B. The relationship between tyrosinase activity and skin color in human foreskins. J Invest Dermatol 1990: 95: 915.
  • 20
    Kadekaro A L, Kavanagh R J, Wakamatsu K, Ito S, Pipitone M A, Abdel-Malek Z A. Cutaneous photobiology. The melanocyte vs. the sun: who will win the final round? Pigment Cell Res 2003: 16: 434447.
  • 21
    Eller M S, Ostrom K, Gilchrest B A. DNA damage enhances melanogenesis. Proc Natl Acad Sci U S A 1996: 93: 10871092.
  • 22
    Freeman S E, Hacham H, Gange R W, Maytum D J, Sutherland J C, Sutherland B M. Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light. Proc Natl Acad Sci U S A 1989: 86: 56055609.
  • 23
    Parrish J A, Jaenicke K F, Anderson R R. Erythema and melanogenesis action spectra of normal human skin. Photochem Photobiol 1982: 36: 187191.
  • 24
    Gilchrest B A, Zhai S, Eller M S, Yarosh D B, Yaar M. Treatment of human melanocytes and S91 melanoma cells with the DNA repair enzyme T4 endonuclease V enhances melanogenesis after ultraviolet irradiation. J Invest Dermatol 1993: 101: 666672.
  • 25
    Cui R, Widlund H R, Feige E et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 2007: 128: 853864.
  • 26
    Khlgatian M K, Hadshiew I M, Asawanonda P et al. Tyrosinase gene expression is regulated by p53. J Invest Dermatol 2002: 118: 126132.
  • 27
    Kichina J, Green A, Rauth S. Tumor suppressor p53 down-regulates tissue-specific expression of tyrosinase gene in human melanoma cell lines. Pigment Cell Res 1996: 9: 8591.
  • 28
    Nylander K, Bourdon J C, Bray S E et al. Transcriptional activation of tyrosinase and TRP-1 by p53 links UV irradiation to the protective tanning response. J Pathol 2000: 190: 3946.
  • 29
    Setlow R B, Carrier W L. Pyrimidine dimers in ultraviolet-irradiated DNA’s. J Mol Biol 1966: 17: 237254.
  • 30
    Eller M S, Yaar M, Gilchrest B A. DNA damage and melanogenesis. Nature 1994: 372: 413414.
  • 31
    Gilchrest B A, Eller M S. DNA photodamage stimulates melanogenesis and other photoprotective responses. J Investig Dermatol Symp Proc 1999: 4: 3540.
  • 32
    Pedeux R, Al-Irani N, Marteau C et al. Thymidine dinucleotides induce S phase cell cycle arrest in addition to increased melanogenesis in human melanocytes. J Invest Dermatol 1998: 111: 472477.
  • 33
    Eller M S, Maeda T, Magnoni C, Atwal D, Gilchrest B A. Enhancement of DNA repair in human skin cells by thymidine dinucleotides: evidence for a p53-mediated mammalian SOS response. Proc Natl Acad Sci U S A 1997: 94: 1262712632.
  • 34
    Maeda T, Eller M S, Hedayati M, Grossman L, Gilchrest B A. Enhanced repair of benzo(a)pyrene-induced DNA damage in human cells treated with thymidine dinucleotides. Mutat Res 1999: 433: 137145.
  • 35
    Goukassian D A, Eller M S, Yaar M, Gilchrest B A. Thymidine dinucleotide mimics the effect of solar simulated irradiation on p53 and p53-regulated proteins. J Invest Dermatol 1999: 112: 2531.
  • 36
    Hadshiew I M, Gilchrest B.A. Age-associated decreases in human DNA repair capacity: implications for the skin. Age 1999: 22: 4557.
  • 37
    Khlgatian M, Hadshiew I M, Eller MS, Giese H, Vijg J, Gilchrest B A. Thymidine dinucleotide pre-treatment reduces DNA mutation frequency. J Invest Dermatol 1999: 112: 557A.
  • 38
    Ruenger T, Li G Z, Luo D, Eller M S, Gilchrest B A. Exposure of fibroblasts to telomere 3′ overhang specific DNA enhances repair of UVB-induced DNA photoproducts and provides protection against UVB-induced mutagenesis. J Invest Dermatol 2002: 119: 328A.
  • 39
    Arad S, Konnikov N, Goukassian D A, Gilchrest B A. T-oligos augment UV-induced protective responses in human skin. FASEB J 2006: 20: 18951897.
  • 40
    Hadshiew I M, Eller M S, Gasparro F P, Gilchrest B A. Stimulation of melanogenesis by DNA oligonucleotides: effect of size, sequence and 5′ phosphorylation. J Dermatol Sci 2001: 25: 127138.
  • 41
    McKay B C, Francis M A, Rainbow A J. Wildtype p53 is required for heat shock and ultraviolet light enhanced repair of a UV-damaged reporter gene. Carcinogenesis 1997: 18: 245249.
  • 42
    Eller M S, Puri N, Hadshiew I M, Venna S S, Gilchrest B A. Induction of apoptosis by telomere 3′ overhang-specific DNA. Exp Cell Res 2002: 276: 185193.
  • 43
    Eller M S, Li G Z, Firoozabadi R, Puri N, Gilchrest B A. Induction of a p95/Nbs1-mediated S phase checkpoint by telomere 3′ overhang specific DNA. FASEB J 2003: 17: 152162.
  • 44
    Li G Z, Eller M S, Hanna K, Gilchrest B A. Signaling pathway requirements for induction of senescence by telomere homolog oligonucleotides. Exp Cell Res 2004: 301: 189200.
  • 45
    Eller M S, Liao X, Liu S et al. A role for WRN in telomere-based DNA damage responses. Proc Natl Acad Sci U S A 2006: 103: 1507315078.
  • 46
    Puri N, Eller M S, Byers H R, Dykstra S, Kubera J, Gilchrest B A. Telomere-based DNA damage responses: a new approach to melanoma. FASEB J 2004: 18: 13731381.
  • 47
    Boukamp P, Mirancea N. Telomeres rather than telomerase a key target for anti-cancer therapy? Exp Dermatol 2007: 16: 7179.
  • 48
    Saretzki G. Telomerase inhibition as cancer therapy. Cancer Lett 2003: 194: 209219.
  • 49
    Ohashi N, Yaar M, Eller M S, Truzzi F, Gilchrest B A. Features that determine telomere homolog oligonucleotide-induced therapeutic DNA damage-like responses in cancer cells. J Cell Physiol 2007: 210: 582595.
  • 50
    Simonsson T. G-quadruplex DNA structures –variations on a theme. Biol Chem 2001: 382: 621628.
  • 51
    Xu X, Hamhouyia F, Thomas S D et al. Inhibition of DNA replication and induction of S phase cell cycle arrest by G-rich oligonucleotides. J Biol Chem 2001: 276: 4322143230.
  • 52
    Bates P J, Kahlon J B, Thomas S D, Trent J O, Miller D M. Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J Biol Chem 1999: 274: 2636926377.
  • 53
    Qi H, Lin C P, Fu X et al. G-quadruplexes induce apoptosis in tumor cells. Cancer Res 2006: 66: 1180811816.
  • 54
    Saretzki G, Sitte N, Merkel U, Wurm R E, Von Zglinicki T. Telomere shortening triggers a p53-dependent cell cycle arrest via accumulation of G-rich single stranded DNA fragments. Oncogene 1999: 18: 51485158.
  • 55
    Yaar M, Eller M S, Panova I et al. Telomeric DNA induces apoptosis and senescence of human breast carcinoma cells. Breast Cancer Res 2007: 9: R13.
  • 56
    Li G Z, Eller M S, Firoozabadi R, Gilchrest B A. Evidence that exposure of the telomere 3′ overhang sequence induces senescence. Proc Natl Acad Sci U S A 2003: 100: 527531.
  • 57
    Goukassian D A, Helms E, Van Steeg H, Van Oostrom C, Bhawan J, Gilchrest B A. Topical DNA oligonucleotide therapy reduces UV-induced mutations and photocarcinogenesis in hairless mice. Proc Natl Acad Sci U S A 2004: 101: 39333938.
  • 58
    Rogakou E P, Pilch D R, Orr A H, Ivanova V S, Bonner W M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998: 273: 58585868.
  • 59
    Stucki M, Jackson S P. gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair (Amst) 2006: 5: 534543.
  • 60
    Hao L Y, Strong M A, Greider C. W. Phosphorylation of H2AX at short telomeres in T cells and fibroblasts. J Biol Chem 2004: 279: 4514845154.
  • 61
    Van Steensel B, Smogorzewska A, De Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell 1998: 92: 401413.
  • 62
    Von Kobbe C, Thoma N H, Czyzewski B K, Pavletich N P, Bohr V A. Werner syndrome protein contains three structure-specific DNA binding domains. J Biol Chem 2003: 278: 5299753006.
  • 63
    Yu C E, Oshima J, Fu Y H et al. Positional cloning of the Werner’s syndrome gene. Science 1996: 272: 258262.
  • 64
    Martin G M, Sprague C A, Epstein C J. Replicative life-span of cultivated human cells. Effects of donor’s age, tissue, genotype. Lab Invest 1970: 23: 8692.
  • 65
    Schulz V P, Zakian V A, Ogburn C E et al. Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum Genet 1996: 97: 750754.
  • 66
    Machwe A, Xiao L, Orren D K. TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA. Oncogene 2004: 23: 149156.
  • 67
    Opresko P L, Otterlei M, Graakjaer J et al. The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 2004: 14: 763774.
  • 68
    Lee J H, Paull T T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005: 308: 551554.