• 1
    Fitzpatrick T B, Breathnach A S. [The epidermal melanin unit system.]. Dermatol Wochenschr 1963: 147: 481489.
  • 2
    Fitzpatrick T B, Lerner A B. Biochemical basis of human melanin pigmentation. AMA Arch Derm Syphilol 1954: 69: 133149.
  • 3
    Hogeboom G H, Adams M H. Mammalian tyrosinase and dopa oxidation. J Biol Chem 1942: 145: 273279.
  • 4
    Lerner A B, Fitzpatrick T B, Calkins E, Summerson W H. Mammalian tyrosinase; the relationship of copper to enzymatic activity. J Biol Chem 1950: 187: 793802.
  • 5
    Reid K, Nishikawa S, Bartlett P F, Murphy M. Steel factor directs melanocyte development in vitro through selective regulation of the number of c-kit+ progenitors. Dev Biol 1995: 169: 568579.
  • 6
    Gaggioli C, Busca R, Abbe P, Ortonne J P, Ballotti R. Microphthalmia-associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes. Pigment Cell Res 2003: 16: 374382.
  • 7
    Fuse N, Yasumoto K, Suzuki H, Takahashi K, Shibahara S. Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene. Biochem Biophys Res Commun 1996: 219: 702707.
  • 8
    Abdel-Malek Z, Swope V B, Suzuki I et al. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc Natl Acad Sci U S A 1995: 92: 17891793.
  • 9
    Slominski A, Tobin D J, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004: 84: 11551228.
  • 10
    Kauser S, Schallreuter K U, Thody A J, Gummer C, Tobin D J. Regulation of human epidermal melanocyte biology by beta-endorphin. J Invest Dermatol 2003: 120: 10731080.
  • 11
    Iyengar B, Misra R S, Subalakshmi B. ACTH acts directly on melanocytes to stimulate melanogenesis--an in vitro study. Indian J Pathol Microbiol 1995: 38: 399402.
  • 12
    Thornton M J, Nelson L D, Taylor A H, Birch M, Laing I, Messenger A G. The modulation of aromatase and estrogen receptor alpha in cultured human dermal papillacells by dexamethasone: a novel mechanism for selective action of estrogen via estrogen receptor beta? J Invest Dermatol 2006: 126: 20102018.
  • 13
    Grando S A, Pittelkow M R, Schallreuter K U. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J Invest Dermatol 2006: 126: 19481965.
  • 14
    Slominski A, Zbytek B, Szczesniewski A et al. CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH. Am J Physiol Endocrinol Metab 2005: 288: E701E706.
  • 15
    Park H Y, Perez J M, Laursen R, Hara M, Gilchrest B A. Protein kinase C-beta activates tyrosinase by phosphorylating serine residues in its cytoplasmic domain. J Biol Chem 1999: 274: 1647016478.
  • 16
    Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev 2000: 80: 9791020.
  • 17
    Schallreuter K U, Wood J M, Pittelkow M R et al. Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin. Science 1994: 263: 14441446.
  • 18
    Spencer J D, Chavan B, Marles L K, Kauser S, Rokos H, Schallreuter K U. A novel mechanism in control of human pigmentation by (beta)-melanocyte-stimulating hormone and 7-tetrahydrobiopterin. J Endocrinol 2005: 187: 293302.
  • 19
    Orlow S J. Melanosomes are specialized members of the lysosomal lineage of organelles. J Invest Dermatol 1995: 105: 37.
  • 20
    Khlgatian M K, Hadshiew I M, Asawanonda P et al. Tyrosinase gene expression is regulated by p53. J Invest Dermatol 2002: 118: 126132.
  • 21
    Cui R, Widlund H R, Feige E et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 2007: 128: 853864.
  • 22
    Lerch K. Copper monooxygenases: tyrosinase and dopamine β-hydroxylase. In: SigelH, ed. Metal Ions in Biological Systems. New York: Marcel Decker, 1981: 143186.
  • 23
    Lerch K. Protein and active site structure of tyrosinase. In: BagnaraJ T, ed. Advances in Pigment Cell Research. New York: A. Liss, 1988: 8598.
  • 24
    Korner A, Pawelek J. Activation of melanoma tyrosinase by a cyclic AMP-dependent protein kinase in a cell-free system. Nature 1977: 267: 444447.
  • 25
    Tice R R, Agurell E, Anderson D et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000: 35: 206221.
  • 26
    Romero-Graillet C, Aberdam E, Biagoli N, Massabni W, Ortonne J P, Ballotti R. Ultraviolet B radiation acts through the nitric oxide and cGMP signal transduction pathway to stimulate melanogenesis in human melanocytes. J Biol Chem 1996: 271: 2805228056.
  • 27
    Wood J M, Schallreuter K U. Studies on the reactions between human tyrosinase, superoxide anion, hydrogen peroxide and thiols. Biochim Biophys Acta 1991: 1074: 378385.
  • 28
    Olivares C, Garcia-Borron J C, Solano F. Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in Mammalian tyrosinase. Implications to the catalytic cycle. Biochemistry 2002: 41: 679686.
  • 29
    Wood J M, Schallreuter-Wood K U, Lindsey N J, Callaghan S, Gardner L G. A specific tetrahydrobiopterin binding domain on tyrosinase controls melanogenesis. Biochem Biophys Res Commun 1995: 206: 480485.
  • 30
    Marles L K, Peters E M, Tobin D J, Hibberts N A, Schallreuter K U. Tyrosine hydroxylase isoenzyme I is present in human melanosomes: a possible novel function in pigmentation. Exp Dermatol 2003: 12: 6170.
  • 31
    Naoi M, Minami M, Maruyama W, Parvez H. Allosteric regulation of tyrosine hydroxylase activity by its cofactor tetrahydrobioterin. In: NaoiM, ParvezS H, eds. Tyrosine Hydroxylase. Utrecht: VSP, 1993: 2336.
  • 32
    Potterf S B, Hearing V J. Tyrosine transport into melanosomes is increased following stimulation of melanocyte differentiation. Biochem Biophys Res Commun 1998: 248: 795800.
  • 33
    Schallreuter K U, Wood J M. The importance of L-phenylalanine transport and its autocrine turnover to L-tyrosine for melanogenesis in human epidermal melanocytes. Biochem Biophys Res Commun 1999: 262: 423428.
  • 34
    Schallreuter K U, Schulz-Douglas V, Bünz A, Beazley W, Körner C. Pteridines in the control of pigmentation. J Invest Dermatol 1997: 109: 3135.
  • 35
    Schallreuter K U, Chavan B, Rokos H, Hibberts N, Panske A, Wood J M. Decreased phenylalanine uptake and turnover in patients with vitiligo. Mol Genet Metab 2005: 86 (Suppl 1): S2733.
  • 36
    Pey A L, Martinez A, Charubala R et al. Specific interaction of the diastereomers 7(R)- and 7(S)-tetrahydrobiopterin with phenylalanine hydroxylase: implications for understanding primapterinuria and vitiligo. FASEB J 2006: 20: 21302132.
  • 37
    Kaufman S. Tetrahydrobiopterin: Basic Biochemistry and Role in Human Disease. Baltimore, USA: John Hopkins University Press, 1997.
  • 38
    Wood J M, Chavan B, Hafeez I, Schallreuter K U. Regulation of tyrosinase by tetrahydropteridines and H2O2. Biochem Biophys Res Commun 2004: 325: 14121417.
  • 39
    Spencer J D. H2O2-mediated oxidation affects POMC-processing and POMC-derived peptides in the human epidermis using vitiligo as a model for oxidative stress. PhD thesis. University of Bradford, UK 2007.
  • 40
    Seiji M, Fitzpatrick T B, Birbeck M S. The melanosome: a distinctive subcellular particle of mammalian melanocytes and the site of melanogenesis. J Invest Dermatol 1961: 36: 243252.
  • 41
    Fuller B B, Spaulding D T, Smith D R. Regulation of the catalytic activity of preexisting tyrosinase in black and Caucasian human melanocyte cell cultures. Exp Cell Res 2001: 262: 197208.
  • 42
    Ancans J, Thody A J. Activation of melanogenesis by vacuolar type H(+)-ATPase inhibitors in amelanotic, tyrosinase positive human and mouse melanoma cells. FEBS Lett 2000: 478: 5760.
  • 43
    Ancans J, Hoogduijn M J, Thody A J. Melanosomal pH, pink locus protein and their roles in melanogenesis. J Invest Dermatol 2001: 117: 158159.
  • 44
    Engler M B, Engler M M, Chen C Y et al. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr 2004: 23: 197204.
  • 45
    Ancans J, Tobin D J, Hoogduijn M J, Smit N P, Wakamatsu K, Thody A J. Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ration and melanosomal maturation in melanocytes and melanoma cells. Exp Cell Res 2001: 268: 2635.
  • 46
    Anbar S, Westerhof W, Badawy N, Abdel-Rahman A T, Salem H. The role of H1 and H2 receptor antagonists in inhibition of UVB-induced melanogenesis in guinea pigs. EADV 15th Congress 2006: Abstract FC16.14.
  • 47
    Schallreuter K U, Rokos H. From the bench to the bedside: proton pump inhibitors can worsen vitiligo. Br J Dermatol 2007: 156: 13711373.
  • 48
    Slominski A, Paus R, Wortsman J. On the potential role of proopiomelanocortin in skin physiology and pathology. Mol Cell Endocrinol 1993: 93: C1C6.
  • 49
    Peters E M, Tobin D J, Seidah N G, Schallreuter K U. Pro-opiomelanocortin-related peptides, prohormone convertases 1 and 2 and the regulatory peptide 7B2 are present in melanosomes of human melanocytes. J Invest Dermatol 2000: 114: 430437.
  • 50
    Berson J F, Theos A C, Harper D C, Tenza D, Raposo G, Marks M S. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J Cell Biol 2003: 161: 521533.
  • 51
    Kauser S, Thody A J, Schallreuter K U, Gummer C L, Tobin D J. A fully functional proopiomelanocortin/melanocortin-1 receptor system regulates the differentiation of human scalp hair follicle melanocytes. Endocrinology 2005: 146: 532543.
  • 52
    Spencer J D, Gibbons N C J, Böhm M, Schallreuter K U. The Ca2+ binding capacity of epidermal furin is disrupted in vitiligo by H2O2-mediated oxidation. Endocrinology 2007, in press.
  • 53
    Lerner A B, McGuire J S. Effect of alpha- and betamelanocyte stimulating hormones on the skin colour of man. Nature 1961: 189: 176179.
  • 54
    Orlow S J, Hotchkiss S, Pawelek J M. Internal binding sites for MSH: analyses in wild-type and variant Cloudman melanoma cells. J Cell Physiol 1990: 142: 129136.
  • 55
    Chakraborty A K, Orlow S J, Bolognia J L, Pawelek J M. Structural/functional relationships between internal and external MSH receptors: modulation of expression in Cloudman melanoma cells by UVB radiation. J Cell Physiol 1991: 147: 16.
  • 56
    Moore J, Wood J M, Schallreuter K U. Evidence for specific complex formation between alpha-melanocyte stimulating hormone and 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin using near infrared Fourier transform Raman spectroscopy. Biochemistry 1999: 38: 1531715324.
  • 57
    Schallreuter K U, Moore J, Tobin D J. et al. Alpha-MSH can control the essential cofactor 6-tetrahydrobiopterin in melanogenesis. Ann N Y Acad Sci 1999: 885: 329341.
  • 58
    Slominski A, Plonka P M, Pisarchik A et al. Preservation of eumelanin hair pigmentation in proopiomelanocortin-deficient mice on a nonagouti (a/a) genetic background. Endocrinology 2005: 146: 12451253.
  • 59
    Slominski A, Zbytek B, Zmijewski M et al. Corticotropin releasing hormone and the skin. Front Biosci 2006: 11: 22302248.
  • 60
    Gillbro J M, Marles L K, Hibberts N A, Schallreuter K U. Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation in human epidermal melanocytes. J Invest Dermatol 2004: 123: 346353.
  • 61
    Al Sarraj J, Vinson C, Han J, Thiel G. Regulation of GTP cyclohydrolase I gene transcription by basic region leucine zipper transcription factors. J Cell Biochem 2005: 96: 10031020.
  • 62
    Schallreuter K U, Rokos H, Chavan B, Gillbro J M, Zothner C, Wood J M. Coenzyme Q10 and hydroquinone generated quinones contribute significantly to quinone mediated oxidative stress which can be reduced by 6-tetrahydrobiopterin and thioredoxin reductase. Free Radic Biol Med 2007: submitted.
  • 63
    Lunec J, Pieron C, Sherbet G V, Thody A J. Alpha-melanocyte-stimulating hormone immunoreactivity in melanoma cells. Pathobiology 1990: 58: 193197.
  • 64
    Schauer E, Trautinger F, Kock A et al. Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. J Clin Invest 1994: 93: 22582262.
  • 65
    Chakraborty A, Slominski A, Ermak G, Hwang J, Pawelek J. Ultraviolet B and melanocyte-stimulating hormone (MSH) stimulate mRNA production for alpha MSH receptors and proopiomelanocortin-derived peptides in mouse melanoma cells and transformed keratinocytes. J Invest Dermatol 1995: 105: 655659.
  • 66
    Kippenberger S, Bernd A, Bereiter-Hahn J, Ramirez-Bosca A, Kaufmann R, Holzmann H. Transcription of melanogenesis enzymes in melanocytes: dependence upon culture conditions and co-cultivation with keratinocytes. Pigment Cell Res 1996: 9: 179184.
  • 67
    D’Orazio J A, Nobuhisa T, Cui R et al. Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning. Nature 2006: 443: 340344.
  • 68
    Bargonetti J, Friedman P N, Kern S E, Vogelstein B, Prives C. Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 1991: 65: 10831091.
  • 69
    El-Deiry W S, Kern S E, Pietenpol J A, Kinzler K W, Vogelstein B. Definition of a consensus binding site for p53. Nat Genet 1992: 1: 4549.
  • 70
    Vile G F. Active oxygen species mediate the solar ultraviolet radiation-dependent increase in the tumour suppressor protein p53 in human skin fibroblasts. FEBS Lett 1997: 412: 7074.
  • 71
    Xie Z, Chen D, Jiao D, Bystryn J C. Vitiligo antibodies are not directed to tyrosinase. Arch Dermatol 1999: 135: 417422.
  • 72
    Schallreuter K U, Kothari S, Hasse S et al. In situ and in vitro evidence for DCoH/HNF-1 alpha transcription of tyrosinase in human skin melanocytes. Biochem Biophys Res Commun 2003: 301: 610616.
  • 73
    Schallreuter K U, Wazir U, Kothari S, Gibbons N C, Moore J, Wood J M. Human phenylalanine hydroxylase is activated by H2O2: a novel mechanism for increasing the L-tyrosine supply for melanogenesis in melanocytes. Biochem Biophys Res Commun 2004: 322: 8892.
  • 74
    Thöny B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis regeneration and functions. Biochem J 2000: 347: 116.
  • 75
    Schallreuter K U, Moore J, Wood J M et al. Epidermal H2O2 accumulation alters tetrahydrobiopterin (6BH4) recycling in vitiligo: identification of a general mechanism in regulation of all 6BH4-dependent processes? J Invest Dermatol 2001: 116: 167174.
  • 76
    Kothari S. A comparative study of clinically similar leukodermas using DCoH/HNF-1α expression as a marker for transcriptional analyses. PhD thesis. University of Bradford, UK 2005.
  • 77
    Yang G, Zhang G, Pittelkow M R, Ramoni M, Tsao H. Expression Profiling of UVB Response in Melanocytes Identifies a Set of p53-Target Genes. J Invest Dermatol 2006: 126: 24902506.
  • 78
    Atoyan R Y, Sharov A A, Eller M S, Sargsyan A, Botchkarev V A, Gilchrest B A. Oligonucleotide treatment increases eumelanogenesis, hair pigmentation and melanocortin-1 receptor expression in the hair follicle. Exp Dermatol 2007: 16: 671677.
  • 79
    Hussain S P, Harris C C. p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis. J Nippon Med Sch 2006: 73: 5464.
  • 80
    Schallreuter K U, Körner C, Pittelkow M R, Swanson N N, Gardner M L. The induction of the alpha-1-adrenoceptor signal transduction system on human melanocytes. Exp Dermatol 1996: 5: 2023.
  • 81
    Wood J M, Gibbons N C, Schallreuter K U. Melanocortins in human melanocytes. Cell Mol Biol (Noisy-le-grand) 2006: 52: 7578.
  • 82
    Wakamatsu K, Graham A, Cook D, Thody A J. Characterisation of ACTH peptides in human skin and their activation of the melanocortin-1 receptor. Pigment Cell Res 1997: 10: 288297.
  • 83
    Schallreuter K U, Lemke K R, Pittelkow M R, Wood J M, Körner C, Malik R. Catecholamines in human keratinocyte differentiation. J Invest Dermatol 1995: 104: 953957.
  • 84
    Kaufmann A J, Lynham J A, Sanders L, Brown A M, Molenaar P. Contribution of differential efficacy to the pharmacology of human b1- and b2-adrenoceptors. In: RuffoloR R J, ed. Adrenoceptors: Structure, Function and Pharmacology. Luxembourg: Harwood Academic, 1995: 215222.
  • 85
    Howell B F, McCune S, Schaffer R. Lactate-to-pyruvate or pyruvate-to-lactate assay for lactate dehydrogenase: a re-examination. Clin Chem 1979: 25: 269272.
  • 86
    Hoogduijn M J, Cemeli E, Ross K, Anderson D, Thody A J, Wood J M. Melanin protects melanocytes and keratinocytes against H2O2-induced DNA strand breaks through its ability to bind Ca2+. Exp Cell Res 2004: 294: 6067.
  • 87
    Schallreuter K U. Vitiligo. In: HertlM, ed. Autoimmune Diseases of the Skin Pathogenesis, Diagnosis, Management. Wien: Springer, 2005: 367384.
  • 88
    Schallreuter K U, Rübsam K, Gibbons N C J et al. Methionine sulfoxide reductases A and B are deactivated by H2O2 in the epidermis of patients with vitiligo. J Invest Dermatol 2007: in press (Epub October 18 2007).
  • 89
    Yohn J J, Norris D A, Yrastorza D G et al. Disparate antioxidant enzyme activities in cultured human cutaneous fibroblasts, keratinocytes, and melanocytes. J Invest Dermatol 1991: 97: 405409.
  • 90
    Schallreuter K U. Oxidative stress in the human epidermis. G Ital Dermatol Venereol 2005: 140: 505514.
  • 91
    Spencer J D, Gibbons N C, Rokos H, Peters E M, Wood J M, Schallreuter K U. Oxidative stress via hydrogen peroxide affects proopiomelanocortin peptides directly in the epidermis of patients with vitiligo. J Invest Dermatol 2007: 127: 411420.
  • 92
    Gibbons N C, Wood J M, Rokos H, Schallreuter K U. Computer simulation of native epidermal enzyme structures in the presence and absence of hydrogen peroxide (H2O2): potential and pitfalls. J Invest Dermatol 2006: 126: 25762582.
  • 93
    Schweikardt T, Olivares C, Solano F, Jaenicke E, Garcia-Borron J C, Decker H. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations. Pigment Cell Res 2007: 20: 394401.
  • 94
    Wood J M, Chavan B, Hafeez I, Schallreuter K U. Regulation of tyrosinase by tetrahydropteridines-What is real? A critical reanalysis of H. Wojtasek’s view Biochem Biophys Res Commun 2005: 331: 891893.
  • 95
    Schallreuter K U, Rübsam K, Chavan B et al. Functioning methionine sulfoxide reductases A and B are present in human epidermal melanocytes in the cytosol and in the nucleus. Biochem Biophys Res Commun 2006: 342: 145152.
  • 96
    Halaban R, Moellmann G. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity. Proc Natl Acad Sci U S A 1990: 87: 48094813.
  • 97
    Prota G. Melanins and Melanogenesis. San Diego: Academic Press, 1992.
  • 98
    Jimbow K, Chen H, Park J S, Thomas P D. Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br J Dermatol 2001: 144: 5565.
  • 99
    Hagedoorn P L, Schmidt P P, Andersson K K, Hagen W R, Flatmark T, Martinez A. The effect of substrate, dihydrobiopterin, and dopamine on the EPR spectroscopic properties and the midpoint potential of the catalytic iron in recombinant human phenylalanine hydroxylase. J Biol Chem 2001: 276: 2285022856.
  • 100
    Del Rio M J, Velez-Pardo C. Monoamine neurotoxins-induced apoptosis in lymphocytes by a common oxidative stress mechanism: involvement of hydrogen peroxide (H(2)O(2)), caspase-3, and nuclear factor kappa-B (NF-kappaB), p53, c-Jun transcription factors. Biochem Pharmacol 2002: 63: 677688.
  • 101
    Grillo G, Licciulli F, Liuni S, Sbisa E, Pesole G. PatSearch: A program for the detection of patterns and structural motifs in nucleotide sequences. Nucleic Acids Res 2003: 31: 36083612.
  • 102
    Courtois G, Baumheuter S, Crabtree G R. Purified hepatocyte nuclear factor-1 interacts with a family of hepatocyte specific promoters. Proc Natl Acad Sci U S A 1988: 85: 79377941.
  • 103
    Tsatmali M, Yukitake J, Thody A J. ACTH1-17 is a more potent agonist at the human MC1 receptor than alpha-MSH. Cell Mol Biol (Noisy-le-grand) 1999: 45: 10291034.