SEARCH

SEARCH BY CITATION

References

  • 1
    Palero J A, De Bruijn H S, Van Der Ploeg-van den Heuvel A, Sterenborg H J, Gerritsen H C. Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues. Biophys J 2007: 93: 9921007.
  • 2
    Paoli J, Smedh M, Wennberg A M, Ericson M B. Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics. J Invest Dermatol 2008: 128: 12481255.
  • 3
    Koehler M J, Hahn S, Preller A et al. Morphological skin ageing criteria by multiphoton laser scanning tomography: non-invasive in vivo scoring of the dermal fibre network. Exp Dermatol 2008: 17: 519523.
  • 4
    Zipfel W R, Williams R M, Christie R, Nikitin A Y, Hyman B T, Webb W W. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 2003: 100: 70757080.
  • 5
    Koenig K, Riemann I. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 2003: 8: 432439.
  • 6
    Riemann I, Schenke-Layland K, Ehlers A, et al. High-resolution multiphoton optical tomography of tissues: an in vitro and in vivo study. In: Medical Imaging 2006: Physics of Medical Imaging. San Diego, CA, USA: SPIE, 2006: 61420N61427.
  • 7
    Koenig K, Riemann I, Ehlers A, et al. In vivo multiphoton tomography of skin cancer. In: Multiphoton Microscopy in the Biomedical Sciences VI. San Jose, CA, USA: SPIE, 2006: 60890R60897.
  • 8
    Becker W, Bergmann A, Biskup C. Multispectral fluorescence lifetime imaging by TCSPC. Microsc Res Tech 2007: 70: 403409.
  • 9
    Laiho L H, Pelet S, Hancewicz T M, Kaplan P D, So P T. Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra. J Biomed Opt 2005: 10: 024016.
  • 10
    Ehlers A, Riemann I, Anhut T, Kaatz M, Elsner P, Koenig K. Fluorescence lifetime imaging of human skin and hair. In: Multiphoton Microscopy in the Biomedical Sciences VI. San Jose, CA, USA: SPI0045, 2006: 60890N60900.
  • 11
    Hoffmann K, Stucker M, Altmeyer P, Teuchner K, Leupold D. Selective femtosecond pulse-excitation of melanin fluorescence in tissue. J Invest Dermatol 2001: 116: 629630.
  • 12
    Teuchner K, Ehlert J, Freyer W et al. Fluorescence studies of melanin by stepwise two-photon femtosecond laser excitation. J Fluoresc 2000: 10: 275281.
  • 13
    Riemann I, Dimitrow E, Fischer P, et al. High-resolution multiphoton tomography of human skin in vivo and in vitro. In: Femtosecond Laser Applications in Biology. Strasbourg, France: SPIE, 2004: 2128.
  • 14
    Williams R M, Zipfel W R, Webb W W. Interpreting second-harmonic generation images of collagen I fibrils. Biophys J 2005: 88: 13771386.
  • 15
    Zoumi A, Yeh A, Tromberg B J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 2002: 99: 1101411019.
  • 16
    Teuchner K, Mueller S, Freyer W, et al. Femtosecond two-photon-excited fluorescence of melanin. In: Multiphoton Absorption and Nonlinear Transmission Processes: Materials, Theory, and Applications. Seattle, WA, USA: SPIE, 2003: 211219.
  • 17
    Evans N D, Gnudi L, Rolinski O J, Birch D J, Pickup J C. Glucose-dependent changes in NAD(P)H-related fluorescence lifetime of adipocytes and fibroblasts in vitro: potential for non-invasive glucose sensing in diabetes mellitus. J Photochem Photobiol B 2005: 80: 122129.
  • 18
    Bird D K, Yan L, Vrotsos K M et al. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 2005: 65: 87668773.
  • 19
    Niesner R, Peker B, Schlusche P, Gericke K H. Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence. Chemphyschem 2004: 5: 11411149.
  • 20
    Lakowicz J R, Szmacinski H. Fluorescence-lifetime based sensing of pH, Ca2+ and glucose. Actuator Chem 1993: 11: 133134.
  • 21
    Schroeder T, Yuan H, Viglianti B L et al. Spatial heterogeneity and oxygen dependence of glucose consumption in R3230Ac and fibrosarcomas of the Fischer 344 rat. Cancer Res 2005: 65: 51635171.
  • 22
    Warburg O, Posener K, Negelein E. Ueber den Stoffwechsel der Tumoren. Biochemische Zeitschrift 1924: 152: 319344.
  • 23
    Gulledge C J, Dewhirst M W. Tumor oxygenation: a matter of supply and demand. Anticancer Res 1996: 16: 741749.
  • 24
    Pradhan A, Pal P, Durocher G et al. Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species. J Photochem Photobiol B 1995: 31: 101112.
  • 25
    Skala M C, Riching K M, Bird D K et al. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J Biomed Opt 2007: 12: 024014.
  • 26
    Schneckenburger H, Wagner M, Weber P, Strauss W S, Sailer R. Autofluorescence lifetime imaging of cultivated cells using a UV picosecond laser diode. J Fluoresc 2004: 14: 649654.
  • 27
    Lakowicz J R, Szmacinski H, Nowaczyk K, Johnson M L. Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci USA 1992: 89: 12711275.
  • 28
    Chen J, Zhuo S, Luo T, Jiang X, Zhao J. Spectral characteristics of autofluorescence and second harmonic generation from ex vivo human skin induced by femtosecond laser and visible lasers. Scanning 2006: 28: 319326.
  • 29
    Masters B R, So P T, Gratton E. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J 1997: 72: 24052412.
  • 30
    Huang S, Heikal A A, Webb W W. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 2002: 82: 28112825.
  • 31
    Koenig K. Clinical multiphoton tomography. J Biophoton 2008: 1: 1323.