Tissue engineering for the management of chronic wounds: current concepts and future perspectives

Authors


Correspondence: Geoffrey C. Gurtner, MD, 257 Campus Drive, Stanford, CA 94305, USA, Tel.: 650-724-6672, Fax: 650-724-9501, e-mail: ggurtner@stanford.edu

Abstract

Chronic wounds constitute a significant and growing biomedical burden. With the increasing growth of populations prone to dysfunctional wound healing, there is an urgent and unmet need for novel strategies to both prevent and treat these complications. Tissue engineering offers the potential to create functional skin, and the synergistic efforts of biomedical engineers, material scientists, and molecular and cell biologists have yielded promising therapies for non-healing wounds. However, traditional paradigms for wound healing focus largely on the role of inflammatory cells and fail to incorporate more recent research highlighting the importance of stem cells and matrix dynamics in skin repair. Approaches to chronic wound healing centred on inflammation alone are inadequate to guide the development of regenerative medicine-based technologies. As the molecular pathways and biologic defects underlying non-healing wounds are further elucidated, multifaceted bioengineering systems must advance in parallel to exploit this knowledge. In this viewpoint essay, we highlight the current concepts in tissue engineering for chronic wounds and speculate on areas for future research in this increasingly interdisciplinary field.

Ancillary