Get access

Influence of river conditions during seaward migration and ocean conditions on survival rates of Snake River Chinook salmon and steelhead

Authors


Charles E. Petrosky, Idaho Department of Fish and Game, 600 S. Walnut Avenue, PO Box 25, Boise, ID 83707, USA; e-mail: charlie.petrosky@idfg.idaho.gov

Abstract

Petrosky CE, Schaller HA. Influence of river conditions during seaward migration and ocean conditions on survival rates of Snake River Chinook salmon and steelhead.
Ecology of Freshwater Fish 2010: 19: 520–536. © 2010 John Wiley & Sons A/S

Abstract –  Improved understanding of the relative influence of ocean and freshwater factors on survival of at-risk anadromous fish populations is critical to success of conservation and recovery efforts. Abundance and smolt to adult survival rates of Snake River Chinook salmon and steelhead decreased dramatically coincident with construction of hydropower dams in the 1970s. However, separating the influence of ocean and freshwater conditions is difficult because of possible confounding factors. We used long time-series of smolt to adult survival rates for Chinook salmon and steelhead to estimate first year ocean survival rates. We constructed multiple regression models that explained the survival rate patterns using environmental indices for ocean conditions and in-river conditions experienced during seaward migration. Survival rates during the smolt to adult and first year ocean life stages for both species were associated with both ocean and river conditions. Best-fit, simplest models indicate that lower survival rates for Chinook salmon are associated with warmer ocean conditions, reduced upwelling in the spring, and with slower river velocity during the smolt migration or multiple passages through powerhouses at dams. Similarly, lower survival rates for steelhead are associated with warmer ocean conditions, reduced upwelling in the spring, and with slower river velocity and warmer river temperatures. Given projections for warming ocean conditions, a precautionary management approach should focus on improving in-river migration conditions by increasing water velocity, relying on increased spill, or other actions that reduce delay of smolts through the river corridor during their seaward migration.

Ancillary