Inflammasomes: guardians of cytosolic sanctity

Authors


Vishva M. Dixit
Department of Physiological Chemistry
Genentech
1 DNA Way
South San Francisco, CA 94080, USA
Tel.: +1 650 225 1312
Fax: +1 650 225 6127
e-mail: dixit@gene.com

Abstract

Summary:  The innate immune system is critical in recognizing bacterial and viral infections to evoke a proper immune response. Certain members of the intracellular nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family detect microbial components in the cytosol and trigger the assembly of large caspase-1-activating complexes termed inflammasomes. Autoproteolytic maturation of caspase-1 zymogens within these inflammasomes leads to maturation and secretion of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. The NLR proteins ICE protease-activating factor (IPAF), NALP1b (NACHT domain-, leucine-rich repeat-, and PYD-containing protein 1b), and cryopyrin/NALP3 assemble caspase-1-activating inflammasomes in a stimulus-dependent manner. Bacterial flagellin is sensed by IPAF, whereas mouse NALP1b detects anthrax lethal toxin. Cryopyrin/NALP3 mediates caspase-1 activation in response to a wide variety of microbial components and in response to crystalline substances such as the endogenous danger signal uric acid. Genetic variations in Nalp1 and cryopyrin/Nalp3 are associated with autoinflammatory disorders and increased susceptibility to microbial infection. Further understanding of inflammasomes and their role in innate immunity should provide new insights into the mechanisms of host defense and the pathogenesis of autoimmune diseases.

Ancillary