• Staphylococcus aureus;
  • Pseudomonas aeruginosa;
  • Legionella pneumophila;
  • ultraviolet germicidal irradiation;
  • swirling motion;
  • relative humidity

Abstract  Staphylococcus aureus, Pseudomonas aeruginosa, and Legionella pneumophila have been detected in indoor air and linked to human infection. It is essential to adopt control methods to inactivate airborne pathogens. By passing bioaerosols horizontally into a UV device at two flow rates (Qs) and moving cells around a central UVC lamp at relative humidity (RH) of 12.7–16.7%, 58.7–59.6%, and 87.3–90%, the effects of swirling motion and 254-nm ultraviolet germicidal irradiation (UVGI) against bioaerosols were assessed under UV-off and UV-on settings, respectively. An inverse relationship between RH and UVGI effectiveness was observed for every test bioaerosol (r = −0.74 ∼ −0.81, P < 0.0001). Increased UV resistance with RH is likely associated with the hygroscopicity of bioaerosols, evident by increased aerodynamic diameters at high RH (P < 0.05). UVGI effectiveness was significantly increased with decreasing Q (P < 0.0001). Moreover, P. aeruginosa was the most susceptible to UVGI, while the greatest UV resistance occurred in L. pneumophila at low RH and S. aureus at medium and high RH (P < 0.05). Results of UV off show P. aeruginosa and L. pneumophila were more sensitive to air-swirling motion than S. aureus (P < 0.05). Overall, test bioaerosols were reduced by 1.7–4.9 and 0.2–1.7 log units because of the UVGI and swirling movement, respectively.

Practical Implications

The studied UV device, with a combination of swirling motion and UVGI, is effective to inactivate airborne S. aureus, P. aeruginosa, and L. pneumophila. This study also explores the factors governing the UVGI and swirling motion against infectious bioaerosols. With understanding the environmental and operational parameters, the studied UV device has the potential to be installed indoors where people are simultaneously present, for example, hospital wards and nursing homes, to prevent the humans from acquiring infectious diseases.