Get access

Pitfalls and challenges of estimating population growth rate from empirical data: consequences for allometric scaling relations


W. F. Fagan, Dept of Biology, Univ. of Maryland, College Park, MD 20742, USA. E-mail:


The intrinsic rate of increase is a fundamental concept in population ecology, and a variety of problems require that estimates of population growth rate be obtained from empirical data. However, depending on the extent and type of data available (e.g. time series, life tables, life history traits), several alternative empirical estimators of population growth rate are possible. Because these estimators make different assumptions about the nature of age-dependent mortality and density-dependence of population dynamics, among other factors, these quantities capture fundamentally different aspects of population growth and are not interchangeable. Nevertheless, they have been routinely commingled in recent ecoinformatic analyses relating to allometry and conservation biology. Here we clarify some of the confusion regarding the empirical estimation of population growth rate and present separate analyses of the frequency distributions and allometric scaling of three alternative, non-interchangeable measures of population growth. Studies of allometric scaling of population growth rate with body size are additionally sensitive to the statistical line fitting approach used, and we find that different approaches yield different allometric scaling slopes. Across the mix of population growth estimators and line fitting techniques, we find scattered and limited support for the key allometric prediction from the metabolic theory of ecology, namely that log10(population growth rate) should scale as −0.25 power of log10(body mass). More importantly, we conclude that the question of allometric scaling of population growth rate with body size is highly sensitive to previously unexamined assumptions regarding both the appropriate population growth parameter to be compared and the line fitting approach used to examine the data. Finally, we suggest that the ultimate test of allometric scaling of maximum population growth rates with body size has not been done and, moreover, may require data that are not currently available.