Population dynamics in a guild of four Mediterranean ungulates: density-dependence, environmental effects and inter-specific interactions


S. Imperio, Dept of Evolutionary Biology, Univ. of Florence, Via Romana 17, IT-50125 Florence, Italy. E-mail: simona.imperio@libero.it


Population fluctuations in ungulates are driven by both intrinsic and extrinsic factors. Available information, however, mainly refers to arctic, temperate and African ungulate populations, while the dynamics of Mediterranean species, exposed to a milder climate, is known to a much lesser extent. Here we studied the population dynamics of four wild ungulate species in the Castelporziano Preserve near Rome, Italy, as obtained from detailed bag counts from hunting drives during the period 1878–1986: the Italian roe deer Capreolus capreolus italicus, the Maremma wild boar Sus scrofa majori (both endemic to Italy), the native red deer Cervus elaphus, and the alien fallow deer Dama dama. We also considered the effects of the presence of another alien ungulate, the nilgai Boselaphus tragocamelus.

This ungulate community experienced an accidental ‘removal experiment’ when, during World War II, red deer and nilgai were exterminated. This event and the length of the time series allowed us to test two main hypotheses: 1) that the complexity level of the ungulate community affects the strength of intra- and inter-specific competition; and 2) that in Mediterranean environments intra- and inter-specific interactions are stronger than climate forcing. Statistical methods ranged from state-space-modelling, GLM analysis and structural equation models.

The results indicated that direct intra-specific density dependence played a relevant role for all species, and was stronger after the removal. A complex pattern of species interactions was however revealed; fallow deer had a negative effect on roe deer population, while roe deer had an apparent positive effect on red deer and wild boar, possibly mediated by environmental factors. Nilgai appeared to facilitate all deer species. The results of the analysis also confirmed that at present climate appears to play a minor role with respect to density dependence; however, the increasing aridity of the Mediterranean area could change this picture in coming decades.