SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Yujun Yi, Jie Sun, Shanghong Zhang, Zhifeng Yang, Assessment of Chinese sturgeon habitat suitability in the Yangtze River (China): Comparison of generalized additive model, data-driven fuzzy logic model, and preference curve model, Journal of Hydrology, 2016, 536, 447

    CrossRef

  2. 2
    Dinesh Babu Irulappa Pillai Vijayakumar, Frédéric Raulier, Pierre Bernier, David Paré, Sylvie Gauthier, Yves Bergeron, David Pothier, Cover density recovery after fire disturbance controls landscape aboveground biomass carbon in the boreal forest of eastern Canada, Forest Ecology and Management, 2016, 360, 170

    CrossRef

  3. 3
    Xavier Rotllan-Puig, Anna Traveset, Declining relict plants: Climate effect or seed dispersal disruption? A landscape-scale approach, Basic and Applied Ecology, 2016, 17, 1, 81

    CrossRef

  4. 4
    Paige E. Copenhaver-Parry, Shannon E. Albeke, Daniel B. Tinker, Do community-level models account for the effects of biotic interactions? A comparison of community-level and species distribution modeling of Rocky Mountain conifers, Plant Ecology, 2016,

    CrossRef

  5. 5
    David M. Bell, Daniel R. Schlaepfer, On the dangers of model complexity without ecological justification in species distribution modeling, Ecological Modelling, 2016, 330, 50

    CrossRef

  6. 6
    M. Gies, M. Sondermann, D. Hering, C. K. Feld, A comparison of modelled and actual distributions of eleven benthic macroinvertebrate species in a Central European mountain catchment, Hydrobiologia, 2015, 758, 1, 123

    CrossRef

  7. 7
    Chris H. Wilson, T. Trevor Caughlin, David J. Civitello, S. Luke Flory, Combining mesocosm and field experiments to predict invasive plant performance: a hierarchical Bayesian approach, Ecology, 2015, 96, 4
  8. 8
    S. M. Smart, S. Jarvis, K. J. Walker, P. A. Henrys, O. L. Pescott, R. H. Marrs, Common plants as indicators of habitat suitability for rare plants; quantifying the strength of the association between threatened plants and their neighbours, New Journal of Botany, 2015, 5, 2, 72

    CrossRef

  9. 9
    Quresh S. Latif, Victoria A. Saab, Kim Mellen-Mclean, Jonathan G. Dudley, Evaluating habitat suitability models for nesting white-headed woodpeckers in unburned forest, The Journal of Wildlife Management, 2015, 79, 2
  10. 10
    Emily Sohanna Acheson, Jeremy Thomas Kerr, Looking Forward by Looking Back: Using Historical Calibration to Improve Forecasts of Human Disease Vector Distributions, Vector-Borne and Zoonotic Diseases, 2015, 15, 3, 173

    CrossRef

  11. 11
    Falko T. Buschke, Luc De Meester, Luc Brendonck, Bram Vanschoenwinkel, Partitioning the variation in African vertebrate distributions into environmental and spatial components – exploring the link between ecology and biogeography, Ecography, 2015, 38, 5
  12. 12
    Susana França, Henrique N. Cabral, Predicting fish species richness in estuaries: Which modelling technique to use?, Environmental Modelling & Software, 2015, 66, 17

    CrossRef

  13. 13
    Hiroshi Tsunoda, Yoshito Mitsuo, Hiroto Enari, Predicting patterns of intentional introduction of non-native largemouth bass into farm ponds in northeastern Japan, Ecological Research, 2015, 30, 1, 15

    CrossRef

  14. 14
    Nicolas Mouquet, Yvan Lagadeuc, Vincent Devictor, Luc Doyen, Anne Duputié, Damien Eveillard, Denis Faure, Eric Garnier, Olivier Gimenez, Philippe Huneman, Franck Jabot, Philippe Jarne, Dominique Joly, Romain Julliard, Sonia Kéfi, Gael J. Kergoat, Sandra Lavorel, Line Le Gall, Laurence Meslin, Serge Morand, Xavier Morin, Hélène Morlon, Gilles Pinay, Roger Pradel, Frank M. Schurr, Wilfried Thuiller, Michel Loreau, REVIEW: Predictive ecology in a changing world, Journal of Applied Ecology, 2015, 52, 5
  15. 15
    Anders Juel, Geoffrey Brian Groom, Jens-Christian Svenning, Rasmus Ejrnæs, Spatial application of Random Forest models for fine-scale coastal vegetation classification using object based analysis of aerial orthophoto and DEM data, International Journal of Applied Earth Observation and Geoinformation, 2015, 42, 106

    CrossRef

  16. 16
    Anas Altartouri, Leena Nurminen, Ari Jolma, Spatial neighborhood effect and scale issues in the calibration and validation of a dynamic model of Phragmites australis distribution – A cellular automata and machine learning approach, Environmental Modelling & Software, 2015, 71, 15

    CrossRef

  17. 17
    Leon Marshall, Luísa G. Carvalheiro, Jesús Aguirre-Gutiérrez, Merijn Bos, G. Arjen Groot, David Kleijn, Simon G. Potts, Menno Reemer, Stuart Roberts, Jeroen Scheper, Jacobus C. Biesmeijer, Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type, Ecology and Evolution, 2015, 5, 19
  18. 18
    Owen L. Petchey, Mikael Pontarp, Thomas M. Massie, Sonia Kéfi, Arpat Ozgul, Maja Weilenmann, Gian Marco Palamara, Florian Altermatt, Blake Matthews, Jonathan M. Levine, Dylan Z. Childs, Brian J. McGill, Michael E. Schaepman, Bernhard Schmid, Piet Spaak, Andrew P. Beckerman, Frank Pennekamp, Ian S. Pearse, The ecological forecast horizon, and examples of its uses and determinants, Ecology Letters, 2015, 18, 7
  19. 19
    Michael Heads, The relationship between biogeography and ecology: envelopes, models, predictions, Biological Journal of the Linnean Society, 2015, 115, 2
  20. 20
    Annette R. Grilli, Emily J. Shumchenia, Toward wind farm monitoring optimization: assessment of ecological zones from marine landscapes using machine learning algorithms, Hydrobiologia, 2015, 756, 1, 117

    CrossRef

  21. 21
    Andrew L. Sheldon, Scott A. Grubbs, Distributional ecology of a rare, endemic stonefly, Freshwater Science, 2014, 33, 4, 1119

    CrossRef

  22. 22
    Pierre Deville, Catherine Linard, Samuel Martin, Marius Gilbert, Forrest R. Stevens, Andrea E. Gaughan, Vincent D. Blondel, Andrew J. Tatem, Dynamic population mapping using mobile phone data, Proceedings of the National Academy of Sciences, 2014, 111, 45, 15888

    CrossRef

  23. 23
    Aleksandar Radosavljevic, Robert P. Anderson, Making better Maxent models of species distributions: complexity, overfitting and evaluation, Journal of Biogeography, 2014, 41, 4
  24. 24
    Javier Gutiérrez Illán, Chris D. Thomas, Julia A. Jones, Weng-Keen Wong, Susan M. Shirley, Matthew G. Betts, Precipitation and winter temperature predict long-term range-scale abundance changes in Western North American birds, Global Change Biology, 2014, 20, 11
  25. 25
    Robert A. Boria, Link E. Olson, Steven M. Goodman, Robert P. Anderson, Spatial filtering to reduce sampling bias can improve the performance of ecological niche models, Ecological Modelling, 2014, 275, 73

    CrossRef

  26. 26
    Kévin Le Rest, David Pinaud, Pascal Monestiez, Joël Chadoeuf, Vincent Bretagnolle, Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation, Global Ecology and Biogeography, 2014, 23, 7
  27. 27
    M. Snickars, M. Gullström, G. Sundblad, U. Bergström, A.-L. Downie, M. Lindegarth, J. Mattila, Species–environment relationships and potential for distribution modelling in coastal waters, Journal of Sea Research, 2014, 85, 116

    CrossRef

  28. 28
    Adamu M. Ibrahim, Brandon Bennett, The Assessment of Machine Learning Model Performance for Predicting Alluvial Deposits Distribution, Procedia Computer Science, 2014, 36, 637

    CrossRef

  29. 29
    Robert P. Anderson, A framework for using niche models to estimate impacts of climate change on species distributions, Annals of the New York Academy of Sciences, 2013, 1297, 1