Competitive relationships among mobile animals may be expressed through dynamically changing spatial relationships over different time frames. Less common species that are apparently inferior competitors may be able to coexist with more abundant species by concentrating in regions of the landscape little utilized by the former at spatio-temporal scales from annual or seasonal ranges to the specific foraging localities exploited at different stages of the annual cycle. Spatial relationships may be influenced further by dependencies on other resources, predation risks and facilitatory interactions under certain conditions. Our study aimed to determine whether competition with more abundant zebra and buffalo restricted the abundance of sable antelope in a region where these three tall-grass grazers overlapped in their herd distributions. We tracked the simultaneous movements of animals representing herds of these species over two dry seasons and one wet season using GPS-GSM collars, and estimated seasonal or monthly range extents and their overlap. We also compared daily separation distances between these animals against the null pattern expected if their movements had been independent, and assessed how prior grazing by buffalo influenced the subsequent use of these localities by sable. The range of the sable herd was mostly separated from the seasonal range of the buffalo herd during the late dry season of 2006 and throughout the dry season of 2007. Seasonal home ranges of zebra herds overlapped partially with the range of the sable herd during most of the year. Even during times when their ranges overlapped, sable were rarely recorded within <1 km of the buffalo herd. Prior grazing by buffalo beyond a threshold level inhibited later use of these localities by sable, but the sable were nevertheless able to exploit places that were little utilized by buffalo at that time. Sable were less able to evade overlap with the small, mobile zebra herds, and hence more vulnerable to competitive exclusion by zebra than by buffalo. Our findings demonstrate how less abundant species can restrict competition from more abundant competitors through dynamic spatial partitioning in regions where their home ranges overlap.