SEARCH

SEARCH BY CITATION

Theoretical models of tree–grass coexistence in savannas have focused primarily on the role of resource availability and fire. It is clear that herbivores heavily impact vegetation structure in many savannas, but their role in driving tree–grass coexistence and the stability of the savanna state has received less attention. Theoretical models of tree–grass dynamics tend to treat herbivory as a constant rather than a dynamic variable, yet herbivores respond dynamically to changes in vegetation structure in addition to modifying it. In particular, many savannas host two distinct herbivore guilds, grazers and browsers, both of which have the potential to exert profound effects on tree/grass balance. For example, grazers may indirectly favor tree recruitment by suppressing the destructive effects of fire, and browsers may facilitate the expansion of grassland by reducing the competitive dominance of trees. We use a simple theoretical model to explore the role of grazer and browser dynamics on savanna vegetation structure and stability across fire and resource availability gradients. Our model suggests that herbivores may expand the range of conditions under which trees and grasses are able to stably coexist, as well as having positive reciprocal effects on their own niche spaces. In addition, we suggest that given reasonable assumptions, indirect mutualisms can arise in savannas between functional groups of herbivores because of the interplay of consumption and ecosystem feedbacks.