SEARCH

SEARCH BY CITATION

References

  • Bjornstad O. N. and Grenfell B. T . 2001 . Noisy clockwork: time series analysis of population fluctuations in animals . – Science 293 : 638643 .
  • Buckland S. T. et al. 2004 . State-space models for the dynamics of wild animal populations . – Ecol. Modell. 171 : 157175 .
  • Burnham K. P. and Anderson D. R . 2002 . Model selection and multimodel inference: a practical information-theoretic approach . – Springer .
  • Cleveland W. S. and Devlin S. J . 1988 . Locally weighted regression: an approach to regression analysis by local fitting . – J. Am. Stat. Ass. 83 : 596610 .
  • Collen B. et al. 2009 . Monitoring change in vertebrate abundance: the Living Planet Index . – Conserv. Biol. 23 : 317327 .
  • Cutler D. R. et al. 2007 . Random forests for classification in ecology . – Ecology 88 : 27832792 .
  • De Gooijer J. G. and Hyndman R. J . 2006 . 25 years of time series forecasting . – Int. J. Forecasting 22 : 443473 .
  • Dennis B. et al. 1991 . Estimation of growth and extinction parameters for endangered species . – Ecol. Monogr. 61 : 115143 .
  • Dennis B. et al. 2006 . Estimating density dependence, process noise, and observation error . – Ecol. Monogr. 76 : 323341 .
  • Dorner B. et al. 2008 . Historical trends in productivity of 120 Pacific pink, chum and sockeye salmon stocks reconstructed by using a Kalman filter . – Can. J. Fish. Aquat. Sci. 65 : 18421866 .
  • Ford M. J. (ed.) 2011 . Status review update for Pacific salmon and steelhead listed under the Endangered Species Act . US Dept of Commerce, NOAA Technical Memorandum, NMFS-NWFSC-113. Seattle, WA .
  • Froese R. and Pauly D . 2000 . FishBase 2000: concepts, design and data sources . – ICLARM, Los Baños, Laguna, Philippines .
  • Geweke J. et al. 1983 . Comparing alternative tests of causality in temporal systems: analytic results and experimental evidence . – J. Econometrics 21 : 161194 .
  • Glaser S. M. et al. 2011 . Detecting and forecasting complex nonlinear dynamics in spatially structured catch-per- unit-effort time series for North Pacific albacore (Thunnus alalunga) . – Can. J. Fish. Aquat. Sci. 68 : 400412 .
  • Gurtin M. E. and Maccamy R. C . 1974 . Non-linear age-dependent population dynamics . – Arch. Ration. Mech. Anal. 54 : 281300 .
  • Hassell M. P. et al. 1983 . Variable parasitoid sex-ratios and their effect on host–parasitoid dynamics . – J. Anim. Ecol. 52 : 889904 .
  • Higgins K. et al. 1997 . Stochastic dynamics and deterministic skeletons: population behavior of Dungeness crab . – Science 276 : 14311435 .
  • Hilborn R. and Walters C. J . 1992 . Quantitative fisheries stock assessment: choice, dynamics and uncertainty . – Kluwer .
  • Hilborn R. and Liermann M . 1998 . Standing on the shoulders of giants: learning from experience in fisheries . – Rev. Fish Biol. Fisher. 8 : 273283 .
  • Holmes E. E . 2001 . Estimating risks in declining populations with poor data . – Proc. Natl Acad. Sci. USA 98 : 50725077 .
  • Holmes E. E. and Fagan W. E . 2002 . Validating population viability analysis for corrupted data sets . – Ecology 83 : 23792386 .
  • Holmes E. E. et al. 2007 . A statistical approach to quasi-extinction forecasting . – Ecol. Lett. 10 : 11821198 .
  • Hsieh C. H. et al. 2008 . Extending nonlinear analysis to short ecological time series . – Am. Nat. 171 : 7180 .
  • Hyndman R. J. and Koehler A. B . 2006 . Another look at measures of forecast accuracy . – Int. J. Forecasting 22 : 679688 .
  • Hyndman R. J. et al. 2002 . A state space framework for automatic forecasting using exponential smoothing methods . – Int. J. Forecasting 18 : 439454 .
  • Ives A. R. et al. 2010 . Analysis of ecological time series with ARMA(p,q) models . – Ecology 91 : 858871 .
  • Knape J. and de Valpine P . 2012 . Are patterns of density dependence in the Global Population Dynamics Database driven by uncertainty about population abundance?Ecol. Lett. 15 : 1723 .
  • Lek S. et al. 1996 . Application of neural networks to modelling nonlinear relationships in ecology . – Ecol. Modell. 90 : 3952 .
  • Lindley S. T . 2003 . Estimation of population growth and extinction parameters from noisy data . – Ecol. Appl. 13 : 806813 .
  • Loh J. et al. 2005 . The Living Planet Index: using species population time series to track trends in biodiversity . – Phil. Trans. R. Soc. B 360 : 289295 .
  • May R. M . 1977 . Thresholds and breakpoints in ecosystems with a multiplicity of stable states . – Nature 269 : 471477 .
  • NERC Centre for Population Biology 2010 . The global population dynamics database ver. 2 . – Imperial College .
  • Newbold P. and Granger C. W. J . 1974 . Experience with forecasting univariate time series and combination of forecasts . – J. R. Stat. Soc. A 137 : 131165 .
  • Newman K. B. et al. 2006 . Hidden process models for animal population dynamics . – Ecol. Appl. 16 : 7486 .
  • Pan-European Common Bird Monitoring Scheme 2011 . European common bird index: population trends of European common birds 2011 update. (E. B. C. Council, eds) . – Prague .
  • Perretti C. T. et al. 2013 . Model-free forecasting outperforms the correct mechanistic model for simulated and experimental data . – Proc. Natl Acade. Sci. USA 110 : 52535257 .
  • Raftery A. E. et al. 2005 . Using Bayesian model averaging to calibrate forecast ensembles . – Mon. Weather Rev. 133 : 11551174 .
  • Ricard D. et al. 2011 . Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database . – Fish Fish. 13 : 380398 .
  • Risely K. et al. 2012 . The Breeding Bird Survey 2011. BTO Research Report 624 . – Thetford .
  • Ruggerone G. T. et al. 2010 . Magnitude and trends in abundance of hatchery and wild pink salmon, chum salmon and sockeye salmon in the North Pacific Ocean . – Mar. Coast. Fish. 2 : 306328 .
  • Sauer J. R. et al. 2011 . The North American Breeding Bird Survey, results and analysis 1966–2010, ver. 12.07.2011. (U. P. W. R. Center, eds) . – Laurel, MD .
  • Stergiou K. I. and Christou E. D . 1996 . Modelling and forecasting annual fisheries catches: comparison of regression, univariate and multivariate time series methods . – Fish. Res. 25 : 105138 .
  • Stock J. H. and Watson M. W . 1999 . A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series . – In: Engle R. F. and White H. (eds), Cointegration, causality and forecasting: a festschrift in honor of Clive W. J. Granger . Oxford Univ. Press .
  • Sugihara G . 1994 . Nonlinear forecasting for the classification of natural time-series . – Phil. Trans. R. Soc. A 348 : 477495 .
  • Sugihara G. and May R. M . 1990 . Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series . – Nature 344 : 734741 .
  • Sugihara G. et al. 1990 . Distinguishing error from chaos in ecological time series . – Phil. Trans. R. Soc. B 330 : 235251 .
  • Thrush S. F. et al. 2008 . Complex positive connections between functional groups are revealed by neural network analysis of ecological time series . – Am. Nat. 171 : 669677 .
  • Toth E. et al. 2000 . Comparison of short-term rainfall prediction models for real-time flood forecasting . – J. Hydrol. 239 : 132147 .
  • Ward E. J. et al. 2010 . Inferring spatial structure from time-series data: using multivariate state-space models to detect metapopulation structure of California sea lions in the Gulf of California, Mexico . – J. Appl. Ecol. 47 : 4756 .
  • Wood S. N . 2006 . Generalized additive models: an introduction with R . – Chapman and Hall/CRC Press .