• citric acid;
  • dental erosion;
  • sodium fluoride;
  • stannous fluoride;
  • tooth dissolution

It has recently been shown that stannous fluoride (SnF2), in the form of aqueous solutions and as toothpaste, can reduce the dissolution of enamel in erosive acids in vitro and in situ. The aim of this study was to compare the effect of toothpastes containing SnF2 or NaF on enamel dissolution using an in vivo model. Four healthy anterior teeth in each subject (n = 20) were exposed to diluted citric acid (100 mmol l−1 or 10 mmol l−1) applied using a peristaltic pump (5 ml @7 ml min−1) and the acid was collected in a test tube before and after application of the respective toothpastes (etch I and etch II). Toothpaste was applied to the labial surfaces with a soft brush (four applications, each of 1-min duration), with gentle water rinsing between applications. Each subject had one pair of teeth treated with each of the test toothpastes. Enamel dissolution was examined by assessment of calcium content in the citric acid applied before and after the treatment with toothpaste. The results indicate that the SnF2 toothpaste markedly reduced the dissolution of teeth in vivo (etch II < etch I), whereas the NaF toothpaste provided no protection (etch II > etch I). Toothpaste appears to be an acceptable vehicle for SnF2 and maintains the dissolution-reducing effect exhibited by aqueous solutions of this fluoride salt.