SEARCH

SEARCH BY CITATION

References

  • 1
    Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA, Arnheiter H. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix–loop–helix-zipper protein. Cell 1993;74: 395404
  • 2
    Hughes MJ, Lingrel JB, Krakowsky JM, Anderson KP. A helix–loop–helix transcription factor-like gene is located at the mi locus. J Biol Chem 1993;268: 2068720690
  • 3
    Goding CR. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev 2000;14: 17121728
  • 4
    Widlund HR, Fisher DE. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 2003;22: 30353041.
  • 5
    Shibahara S, Yasumoto K, Amae S, Udono T, Watanabe K, Saito H, Takeda K. Regulation of pigment cell-specific gene expression by MITF. Pigment Cell Res 2000;13(Suppl. 8):98102
  • 6
    Arnheiter H, Hou L, Nguyen MT, Nakayama A, Champagne B, Hallsson JH, Bismuth K. The role of Microphthalmia in pigment cell development. In: OrtonneJ-P, BallottiR, eds. Mechanisms of Suntanning. pp. 4963
  • 7
    Steingrímsson E, Moore KJ, Lamoreux ML, Ferré-D'Amaré, AR, Burley SK, Zimring DC, Skow LC, Hodgkinson CA, Arnheiter H, Copeland NG, Jenkins, NA. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet 1994;8: 256263
  • 8
    Hallsson JH, Favor J, Hodgkinson C, Glaser T, Lamoreux ML, Magnusdottir R, Gunnarsson GJ, Sweet HO, Copeland NG, Jenkins NA, Steingrimsson E. Genomic, transcriptional and mutational analysis of the mouse microphthalmia locus. Genetics 2000;155: 291300
  • 9
    Yasumoto K, Amae S, Udono T, Fuse N, Takeda K, Shibahara S. A big gene linked to small eyes encodes multiple Mitf isoforms: many promoters make light work. Pigment Cell Res 1998;11: 329336
  • 10
    Fuse N, Yasumoto K-I, Suzuki H, Takahashi K, Shibahara S. Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene. BBRC 1996;219: 702707
  • 11
    Watanabe A, Takeda K, Ploplis B, Tachibana M. Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat Genet 1998;18: 283286
  • 12
    Galibert M-D, Yavuzer U, Dexter TJ, Goding CR. Pax3 and regulation of the melanocyte-specific TRP-1 promoter. J Biol Chem 1999;274: 2689426900
  • 13
    Kamaraju AK, Bertolotto C, Chebath J, Revel M. Pax3 down-regulation and shut-off of melanogenesis in melanoma B16/F10.9 by interleukin-6 receptor signaling. J Biol Chem 2002;277: 1513215141
  • 14
    Niu G, Shain KH, Huang M, Ravi R, Bedi A, Dalton WS, Jove R, Yu H. Overexpression of a dominant-negative signal transducer and activator of transcription 3 variant in tumor cells leads to production of soluble factors that induce apoptosis and cell cycle arrest. Cancer Res 2001;61: 32763280
  • 15
    Niu G, Heller R, Catlett-Falcone R, Coppola D, Jaroszeski M, Dalton W, Jove R, Yu H. Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer Res 1999;59: 50595063
  • 16
    Joo A, Aburatani H, Morii E, Iba H, Yoshimura A. STAT3 and MITF cooperatively induce cellular transformation through upregulation of c-fos expression. Oncogene 2004;23: 726734
  • 17
    McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin YL, Ramaswamy S, Avery W, Ding HF, Jordan SA, Jackson IJ, Korsmeyer SJ, Golub TR, Fisher DE. Bcl2 regulation by the melanocyte master regulator mitf modulates lineage survival and melanoma cell viability. Cell 2002;109: 707718
  • 18
    Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Préhu M-O, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthijs G, Amiel J, Lyonnet S, Ceccherini I, Romeo G, Clayton-Smith J, Read AP, Wegner M, Goossens M. SOX10 mutations in patients with Waardenburgs–Hirschprung disease. Nature Genet 1998;18: 171173
  • 19
    Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 2000;107: 16
  • 20
    Verastegui C, Bille K, Ortonne JP, Ballotti R. Regulation of the microphthalmia-associated transcription factor gene by the waardenburg syndrome type 4 gene, SOX10. J Biol Chem 2000;275: 3075730760
  • 21
    Lee M, Goodall J, Verastegui C, Ballotti R, Goding CR. Direct regulation of the microphthalmia promoter by Sox10 links Waardenburg-Shah Syndrome (WS4)-associated hypopigmentation and deafness to WS2. J Biol Chem 2000;275: 3797837983
  • 22
    Watanabe KI, Takeda K, Yasumoto KI, Udono T, Saito H, Ikeda K, Takasaka T, Takahashi K, Kobayashi T, Tachibana M, Shibahara S. Identification of a distal enhancer for the melanocyte-specific promoter of the MITF gene. Pigment Cell Res 2002;15: 201211
  • 23
    Ludwig A, Rehberg S, Wegner M. Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett 2004;556: 236244
  • 24
    Potterf SB, Mollaaghababa R, Hou L, Southard-Smith EM, Hornyak TJ, Arnheiter H, Pavan WJ. Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase. Dev Biol 2001;237: 245257
  • 25
    Elworthy S, Lister JA, Carney TJ, Raible DW, Kelsh RN. Transcriptional regulation of Mitfa accounts for the Sox10 requirement in zebrafish melanophore development. Development 2003;130: 28092818
  • 26
    Tassabehji M, Read AP, Newton VE, Patton M, Gruss P, Harris R, Strachan T. Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat Genet 1993;3: 2630
  • 27
    Tassabehji M, Read AP, Newton VE, Harris R, Balling R, Gruss P, Strachan T. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 1992;355: 635636
  • 28
    Baldwin CT, Lipsky NR, Hoth CF, Cohen T, Mamuya W, Milunsky A. Mutations in PAX3 associated with Waardenburg syndrome type I. Hum Mutat 1994;3: 205211
  • 29
    Southard-Smith EM, Kos L, Pavan W. Sox10 mutation disrupts neural crest development in Dom Hirschprung mouse model. Nature Genet 1998;18: 6064
  • 30
    Dorsky RI, Raible DW, Moon RT. Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes Dev 2000;14: 158162
  • 31
    Takeda K, Yasumoto K, Takada R, Takada S, Watanabe K, Udono T, Saito H, Takahashi K, Shibahara S. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem 2000;275: 1401314016
  • 32
    Saito H, Yasumoto K, Takeda K, Takahashi K, Yamamoto H, Shibahara S. Microphthalmia-associated transcription factor in the wnt signaling pathway. Pigment Cell Res 2003;16: 261265
  • 33
    Larue L, Kumasaka M, Goding CR. Beta-catenin in the melanocyte lineage. Pigment Cell Res 2003;16: 312317
  • 34
    Dorsky RI, Moon RT, Raible DW. Control of neural crest cell fate by the Wnt signalling pathway. Nature 1998;396: 370373
  • 35
    Dunn KJ, Williams BO, Li Y, Pavan WJ. Neural crest-directed gene transfer demonstrates wnt1 role in melanocyte expansion and differentiation during mouse development [In Process Citation]. Proc Natl Acad Sci U S A 2000;97: 1005010055
  • 36
    Ikeya M, Lee SMK, Johnson JE, McMahon AP, Takada S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 1997;289: 966970
  • 37
    Yasumoto K, Takeda K, Saito H, Watanabe K, Takahashi K, Shibahara S. Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling. EMBO J 2002;21: 27032714
  • 38
    van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, Grosschedl R. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 1994;8: 26912703
  • 39
    Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne J-P, Balloti R. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 1998;142: 827835
  • 40
    Price ER, Horstmann MA, Wells AG, Weilbeacher KN, Takemoto CM, Landis MW, Fisher DE. a-Melanocyte-stimulating hormone signaling regulates expression if microphthalmia, a gene deficient in Waardenburg syndrome. J Biol Chem 1998;273: 3304233047
  • 41
    Bertolotto C, Abbe P, Hemesath TJ, Bile K, Fisher DE, Ortonne J-P, Ballotti R. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 1998;142: 827835
  • 42
    Dikstein R, Zhou S, Tjian R. Human TAFII 105 is a cell type-specific TFIID subunit related to hTAFII130. Cell 1996;87: 137146
  • 43
    Yavuzer U, Goding CR. Melanocyte-specific gene expression: role of repression and identification of a melanocyte-specific factor, MSF. Mol Cell Biol 1994;14: 34943503
  • 44
    Huber WE, Price R, Widlund HR, Du J, Davis IJ, Wegner M, Fisher DE. A tissue restricted cAMP transcriptional response: SOX10 modulates MSH-triggered expression of MITF in melanocytes. J Biol Chem 2003;278: 4522445230
  • 45
    Jacquemin P, Lannoy VJ, O'Sullivan J, Read A, Lemaigre FP, Rousseau GG. The transcription factor onecut-2 controls the microphthalmia- associated transcription factor gene. Biochem Biophys Res Commun 2001;285: 12001205
  • 46
    Furumura M, Potterf SB, Toyofuku K, Matsunaga J, Muller J, Hearing VJ. Involvement of ITF2 in the transcriptional regulation of melanogenic genes. J Biol Chem 2001;276: 2814728154
  • 47
    Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 1998;391: 298301
  • 48
    Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG, Price ER, Fisher DZ, Fisher DE. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev 2000;14: 301312
  • 49
    Xu W, Gong L, Haddad MM, Bischof O, Campisi J, Yeh ET, Medrano EE. Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp Cell Res 2000;255: 135143
  • 50
    Wellbrock C, Weisser C, Geissinger E, Troppmair J, Schartl M. Activation of p59(Fyn) leads to melanocyte dedifferentiation by influencing MKP-1-regulated mitogen-activated protein kinase signaling. J Biol Chem 2002;277: 64436454
  • 51
    Sato S, Roberts K, Gambino G, Cook A, Kouzarides T, Goding CR. CBP/p300 as a co-factor for the Microphthalmia transcription factor. Oncogene 1997;14: 30833092
  • 52
    Price ER, Ding H-F, Badalian T, Bhattacharya S, Takemoto C, Yao T-P, Hemesath TJ, Fisher DE. Lineage-specific signalling in melanocytes: c-Kit stimulation recruits p300/CBP to Microphthalmia. J Biol Chem 1998;273: 1798317986
  • 53
    Levy C, Nechushtan H, Razin E. A new role for the STAT3 inhibitor, PIAS3: a repressor of microphthalmia transcription factor. J Biol Chem 2002;277: 19621966
  • 54
    Levy C, Sonnenblick A, Razin E. Role played by microphthalmia transcription factor phosphorylation and its zip domain in its transcriptional inhibition by PIAS3. Mol Cell Biol 2003;23: 90739080
  • 55
    Kotaja N, Karvonen U, Janne OA, Palvimo JJ. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 2002;22: 52225234
  • 56
    Khaled M, Larribere L, Bille K, Aberdam E, Ortonne JP, Ballotti R, Bertolotto C. Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis. J Biol Chem 2002;277: 3369033697.
  • 57
    Takeda K, Takemoto C, Kobayashi I, Watanabe A, Nobukuni Y, Fisher DE, Tachibana M. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum Mol Genet 2000;9: 125132
  • 58
    Aksan I, Goding CR. Targeting the microphthalmia basic helix–loop–helix-leucine zipper transcription factor to a subset of E-Box elements in vitro and in vivo. Mol Cell Biol 1998;18: 69306938
  • 59
    Du J, Miller AJ, Widlund HR, Horstmann MA, Ramaswamy S, Fisher DE. MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am J Pathol 2003;163: 333343
  • 60
    Planque N, Turque N, Opdecamp K, Bailly M, Martin P, Saule S. Expression of the microphthalmia-associated basic helix–loop–helix leucine zipper transcription factor Mi in avian neuroretina cells induces a pigmented phenotype. Cell Growth Differ 1999;10: 525536
  • 61
    Aoki H, Moro O. Involvement of microphthalmia-associated transcription factor (MITF) in expression of human melanocortin-1 receptor (MC1R). Life Sci 2002;71: 21712179
  • 62
    Adachi S, Morii E, Kim D, Ogihara H, Jippo T, Ito A, Lee YM, Kitamura Y. Involvement of mi-transcription factor in expression of alpha-melanocyte-stimulating hormone receptor in cultured mast cells of mice. J Immunol 2000;164: 855860
  • 63
    Galibert MD, Carreira S, Goding CR. The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced tyrosinase expression. EMBO J 2001;20: 50225031
  • 64
    Mansky KC, Sankar U, Han J, Ostrowski MC. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J Biol Chem 2002;277: 1107711083
  • 65
    Moreau JL, Lee M, Mahachi N, Vary J, Mellor J, Tsukiyama T, Goding CR. Regulated displacement of TBP from the PHO8 promoter in vivo requires Cbf1 and the Isw1 chromatin remodeling complex. Molecular Cell 2003;11: 16091620
  • 66
    Nakayama A, Nguyen MT, Chen CC, Opdecamp K, Hodgkinson CA, Arnheiter H. Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech Dev 1998;70: 155166
  • 67
    Kamada S, Shimono A, Shinto Y, Tsujimura T, Takahashi T, Noda T, Kitamura Y, Kondoh H, Tsujimoto Y. bcl-2 deficiency in mice leads to pleiotropic abnormalities: accelerated lymphoid cell death in thymus and spleen, polycystic kidney, hair hypopigmentation, and distorted small intestine. Cancer Res 1995;55: 354359
  • 68
    Yamamura K, Kamada S, Ito S, Nakagawa K, Ichihashi M, Tsujimoto Y. Accelerated disappearance of melanocytes in bcl-2-deficient mice. Cancer Res 1996;56: 35463550
  • 69
    Hornyak TJ, Hayes DJ, Chiu LY, Ziff EB. Transcription factors in melanocyte development: distinct roles for Pax- 3 and Mitf. Mech Dev 2001;101: 4759
  • 70
    Nguyen M, Arnheiter H. Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 2000;127: 35813591
  • 71
    Dooley TP, Wilson RE, Jones NC, Hart IR. Polyoma middle T abrogates TPA requirement of murine melanocytes and induces malignant melanoma. Oncogene 1988;3: 531535
  • 72
    Yavuzer U, Keenan E, Lowings P, Vachtenhein J, Currie G, Goding CR. The microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription. Oncogene 1995;10: 123134
  • 73
    Halaban R, Bohm M, Dotto P, Moellmann G, Cheng E, Zhang Y. Growth regulatory proteins that repress differentiation markers in melanocytes also downregulate the transcription factor microphthalmia. J Invest Dermatol 1996;106: 12661272
  • 74
    Sanchez-Martin M, Rodriguez-Garcia A, Perez-Losada J, Sagrera A, Read AP, Sanchez-Garcia I. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 2002;11: 32313236
  • 75
    Jiang R, Lan Y, Norton CR, Sundberg JP, Gridley T. The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 1998;198: 277285
  • 76
    Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia A, Sanchez ML, Orfao A, Flores T, Sanchez-Garcia I. Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood 2002;100: 12741286
  • 77
    Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 2003;116: 499511
  • 78
    Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002;62: 16131618
  • 79
    Selzer E, Wacheck V, Lucas T, Heere-Ress E, Wu M, Weilbaecher KN, Schlegel W, Valent P, Wrba F, Pehamberger H, Fisher D, Jansen B. The melanocyte-specific isoform of the microphthalmia transcription factor affects the phenotype of human melanoma. Cancer Res 2002;62: 20982103
  • 80
    Tachibana M, Takeda K, Nobukuni Y, Urabe K, Long JE, Meyers KA, Aaronson SA, Miki T. Ectopic expression of MITF, a gene for Waardenburgs syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat Genet 1996;14: 5054
  • 81
    Papaioannou VE. T-box genes in development: from hydra to humans. Int Rev Cytol 2001;207: 170
  • 82
    Suzuki T, Takeuchi J, Koshiba-Takeuchi K, Ogura T. Tbx genes specify posterior digit identity through Shh and BMP signaling. Dev Cell 2004;6: 4353
  • 83
    Carreira S, Liu B, Goding CR. The gene encoding the T-box transcription factor Tbx2 is a target for the microphthalmia-associated transcription factor in melanocytes. J Biol Chem 2000;275: 2192021927
  • 84
    Bejar J, Hong Y, Schartl M. Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytes. Development 2003;130: 65456553
  • 85
    Niles RM. Vitamin a (retinoids) regulation of mouse melanoma growth and differentiation. J Nutr 2003;133: 282S286S
  • 86
    Carreira S, Dexter TJ, Yavuzer U, Easty DJ, Goding CR. Brachyury-related transcription factor Tbx2 and repression of the melanocyte-specific TRP-1 promoter. Mol Cell Biol 1998;18: 50995108
  • 87
    Prince S, Carreira S, Vance KW, Abrahams A, Goding CR. Tbx2 directly represses the expression of the p21(WAF1) cyclin-dependent kinase inhibitor. Cancer Res 2004;64: 16691674
  • 88
    Lingbeek ME, Jacobs JJ, van Lohuizen M. The T-box repressors TBX2 and TBX3 specifically regulate the tumor suppressor gene p14ARF via a variant T-site in the initiator. J Biol Chem 2002;277: 2612026127
  • 89
    Jacobs JJ, Keblusek P, Robanus-Maandag E, Kristel P, Lingbeek M, Nederlof PM, van Welsem T, van De Vijver MJ, Koh EY, Daley GQ, van Lohuizen M. Senescence bypass screen identifies TBX2,which represses cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nat Genet 2000;26: 291299
  • 90
    Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 1997;275: 17901792
  • 91
    Rimm DL, Caca K, Hu G, Harrison FB, Fearon ER. Frequent nuclear/cytoplasmic localization of beta-catenin without exon 3 mutations in malignant melanoma. Am J Pathol 1999;154: 325329
  • 92
    Widlund HR, Horstmann MA, Price ER, Cui J, Lessnick SL, Wu M, He X, Fisher DE. Beta-Catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol 2002;158: 10791087
  • 93
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002;417: 949954
  • 94
    Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G, Pohida T, Heenan P, Duray P, Kallioniemi O, Hayward NK, Trent JM, Meltzer PS. High frequency of BRAF mutations in nevi. Nat Genet 2003;33: 1920
  • 95
    Chin L, Merlino G, Depinho RA. Malignant melanoma: modern black plague and genetic black box. Genes Dev 1998;12: 34673481
  • 96
    Easty DJ, Bennett DC. Protein tyrosine kinases in malignant melanoma. Melanoma Res 2000;10: 401411
  • 97
    Cox PM, Temperley SM, Kumar H, Goding CR. A distinct octamer-binding protein present in malignant melanoma cells. Nucleic Acids Res 1988;16: 1104711056
  • 98
    Eisen T, Easty DJ, Bennett DC, Goding CR. The POU domain transcription factor Brn-2: elevated expression in malignant melanoma and regulation of melanocyte-specific gene expression. Oncogene 1995;11: 21572164
  • 99
    Thomson JA, Murphy K, Baker E, Sutherland GR, Parsons PG, Sturm RA. The brn-2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells. Oncogene 1995;11: 690700
  • 100
    Sturm RA, O'Sullivan BJ, Thomson JA, Jamshida N, Pedley J, Parsons PG. Expression studies of pigmentation and POU-domain genes in human melanoma cells. Pig Cell Res 1994;7: 235240
  • 101
    Nakai S, Kawano H, Yudate T, Nishi M, Kuno J, Nagate A, Jishage K-I, Hamada H, Fujii H, Kawamura K, Shiba K, Noda T. The POU domain trnscription factor Brn-2 is required for the determination of specific neuronal linages in the hypothalamus of the mouse. Genes Dev 1995;9: 31093121
  • 102
    Schonemann MD, Ryan AK, McEvilly RJ, O'Connell SM, Arias CA, Kalla KA, Li P, Sawchenko PE, Rosenfeld MG. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev 1995;9: 31223155
  • 103
    Sturm RA, Bisshop F, Takahashi H, Parsons PG. A melanoma octamer binding protein is responsive to differentiating agents. Cell Growth Differ 1991;2: 519524
  • 104
    Goodall J, Wellbrock C, Dexter TJ, Roberts K, Marais R, Goding CR. The Brn-2 transcription factor links activated BRAF to melanoma proliferation. Mol Cell Biol 2004;24: 29232931
  • 105
    Goodall J, Martinozzi S, Dexter TJ, Champeval D, Carreira S, Larue L, Goding CR. Brn-2 expression controls melanoma proliferation and is directly regulated by β-catenin. Mol Cell Biol 2004;24: 29152922
  • 106
    King R, Weilbaecher KN, McGill G, Cooley E, Mihm M, Fisher DE. Microphthalmia transcription factor. A sensitive and specific melanocyte marker for Melanoma diagnosis. Am J Pathol 1999;155: 731738
  • 107
    Cook AL, Donatien PD, Smith AG, Murphy M, Jones MK, Herlyn M, Bennett DC, Leonard JH, Sturm RA. Human melanoblasts in culture: expression of BRN2 and synergistic regulation by fibroblast growth factor-2, stem cell factor, and endothelin-3. J Invest Dermatol 2003;121: 11501159