SEARCH

SEARCH BY CITATION

References

  • Akiyama, H., Chaboissier, M.-C., Martin, J.F., Schedl, A., and de Crombrugghe, B. (2002). The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16, 28132828.
  • Akiyama, H., Lyons, J.P., Mori-Akiyama, Y., Yang, X., Zhang, R., Zhang, Z., Deng, J.M., Taketo, M.M., Nakamura, T., Behringer, R.R. et al. (2004). Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 18, 10721087.
  • Akiyama, H., Kamitani, T., Yang, X., Kandyil, R., Bridgewater, L.C., Fellous, M., Mori-Akiyama, Y., and de Crombrugghe, B. (2005). The transcription factor Sox9 is degraded by the ubiquitin-proteasome system and stabilized by a mutation in a ubiquitin-target site. Matrix Biol. DOI: 10.1016.
  • Aoki, Y., Saint-Germain, N., Gyda, M., Magner-Fink, E., Lee, Y.H., Credidio, C., and Saint-Jeannet, J.P. (2003). Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. Dev Biol. 259, 1933.
  • Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N. and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126140.
  • Bagheri-Fam, S., Ferraz, C., Demaille, J., Scherer, G., and Pfeifer, D. (2001). Comparative genomics of the SOX9 region in human and Fugu rubripes: conservation of short regulatory sequence elements within large intergenic regions. Genomics 78, 7382.
  • Bernard, P., Tang, P., Liu, S., Dewing, P., Harley, V.R., and Vilain, E. (2003). Dimerization of SOX9 is required for chondrogenesis, but not for sex determination. Hum Mol Genet. 12, 17551765.
  • Bertolotto, C., Busca, R., Abbe, P., Bille, K., Aberdam, E., Ortonne, J.-P., and Ballotti, R. (1998). Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol Cell Biol. 18, 694702.
  • Bi, W., Deng, J.M., Zhang, Z., Behringer, R.R., and de Crombrugghe, B. (1999). Sox9 is required for cartilage formation. Nat Genet. 22, 8589.
  • Bi, W., Huang, W., Whitworth, D.J., Deng, J.M., Zhang, Z., Behringer, R.R., and de Crombrugghe, B. (2001). Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci USA. 98, 66986703.
  • Blache, P., vande Wetering, M., Duluc, I., Domon, C., Berta, P., Freund, J.-N., Clevers, H., and Jay, P. (2004). SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol. 166, 3747.
  • Bondurand, N., Pingault, V., Goerich, D.E., Lemort, N., Sock, E., Le Caignec, C., Wegner, M., and Goossens, M. (2000). Interaction between SOX10, PAX3 and MITF, three genes implicated in Waardenburg syndrome. Hum Mol Genet. 9, 19071917.
  • Bondurand, N., Girard, M., Pingault, V., Lemort, N., Dubourg, O., and Goossens, M. (2001). Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Hum Mol Genet. 10, 27832795.
  • Bowles, J., Schepers, G., and Koopman, P. (2000). Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 227, 239255.
  • Bridgewater, L.C., Lefebvre, V., and de Crombrugghe, B. (1998). Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem. 273, 1499815006.
  • Bridgewater, L.C., Walker, M.D., Miller, G.C., Ellison, T.A., Holsinger, L.D., Potter, J.L., Jackson, T.L., Chen, R.K., Winkel, V.L., Zhang, Z. et al. (2003). Adjacent DNA sequences modulate Sox9 transcriptional activation at paired Sox sites in three chondrocyte-specific enhancer elements. Nucleic Acids Res. 31, 15411553.
  • Britsch, S., Goerich, D.E., Riethmacher, D., Peirano, R.I., Rossner, M., Nave, K.A., Birchmeier, C., and Wegner, M. (2001). The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 6678.
  • Brunelli, S., Casey, E.S., Bell, D., Harland, R., and Lovell-Badge, R. (2003). Expression of Sox3 throughout the developing central nervous system is dependent on the combined action of discrete, evolutionary conserved elements. Genesis. 36, 1224.
  • Bylund, M., Andersson, E., Novitch, B.G., and Muhr, J. (2003). Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nat Neurosci. 6, 11621168.
  • Chaboissier, M.-C., Kobayashi, A., Vidal, V.I.P., Lützkendorf, S., van de Kant, H.J.G., Wegner, M., de Rooij, D.G., Behringer, R.R., and Schedl, A. (2004). Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development. 131, 18911901.
  • Cheung, M., and Briscoe, J. (2003). Neural crest development is regulated by the transcription factor Sox9. Development. 130, 56815693.
  • Cheung, M., Abu-Elmagd, M., Clevers, H., and Scotting, P.J. (2000). Roles of Sox4 in central nervous system development. Mol Brain Res. 79, 180191.
  • Collignon, J., Sockanathan, S., Hacker, A., Cohentannoudji, M., Norris, D., Rastan, S., Stevanovic, M., Goodfellow, P.N., and Lovellbadge, R. (1996). A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development. 122, 509520.
  • Connor, F., Cary, P.D., Read, C.M., Preston, N.S., Driscoll, P.C., Denny, P., Crane-Robinson, C., and Ashworth, A. (1994). DNA binding and bending properties of the post-meiotically expressed Sry related protein Sox-5. Nucleic Acids Res. 22, 33393346.
  • De Santa Barbara, P., Bonneaud, N., Boizet, B., Desclozeaux, M., Moniot, B., Südbeck, P., Scherer, G., Poulat, F., and Berta, P. (1998). Direct Interaction of SRY-related protein SOX9 and Steroidogenic Factor 1 regulates transcription of the human Anti-Müllerian Hormone gene. Mol Cell Biol. 18, 66536665.
  • Downes, M., and Koopman, P. (2001). SOX18 and the transcriptional regulation of blood vessel development. Trends Cardiovasc Med. 11, 318324.
  • Dutton, K.A., Pauliny, A., Lopes, S.S., Elworthy, S., Carney, T.J., Rauch, J., Geisler, R., Haffter, P., and Kelsh, R.N. (2001). Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development. 128, 41134125.
  • Elworthy, S., Lister, J.A., Carney, T.J., Raible, D.W., and Kelsh, R.N. (2003). Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development. 130, 28092818.
  • Ferrari, S., Harley, V., Pontiggia, A., Goodfellow, P.N., Lovell-Badge, R., and Bianchi, M.E. (1992). SRY, like HMG1, recognizes sharp angles in DNA. EMBO J. 11, 44974506.
  • Fitch, K.R., McGowan, K.A., van Raamsdonk, C.D., Fuchs, H., Lee, D., Puech, A., Herault, Y., Threadgill, D.W., Hrabe de Angelis, M., and Barsh, G.S. (2003). Genetics of dark skin in mice. Genes Dev. 17, 214228.
  • Gasca, S., Canizares, J., De Santa Barbara, P., Mejean, C., Poulat, F., Berta, P., and Boizet-Bonhoure, B. (2002). A nuclear export signal within the high mobility group domain regulates the nucleocytoplasmic translocation of SOX9 during sexual determination. Proc Natl Acad Sci U S A. 99, 1119911204.
  • Ghislain, J., Desmarquet-Trin-Dinh, C., Gilardi-Hebenstreit, P., Charnay, P., and Frain, M. (2003). Neural crest patterning: autoregulatory and crest-specific elements co-operate for Krox20 transcriptional control. Development. 130, 941953.
  • Graham, J.D., Hunt, S.M., Tran, N., and Clarke, C.L. (1999). Regulation of the expression and activity by progestins of a member of the SOX gene family of transcriptional modulators. J Mol Endocrinol. 22, 295304.
  • Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron. 39, 749765.
  • Hargrave, M., Wright, E., Kun, J., Emery, J., Cooper, L., and Koopman, P. (1997). Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. Dev Dyn. 210, 7986.
  • Harley, V.R., Lovell-Badge, R., and Goodfellow, P.N. (1994). Definition of a consensus DNA binding site for SRY. Nucleic Acids Res. 22, 15001501.
  • Herbarth, B., Pingault, V., Bondurand, N., Kuhlbrodt, K., Hermans-Borgmeyer, I., Puliti, A., Lemort, N., Goossens, M., and Wegner, M. (1998). Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci USA. 95, 51615165.
  • Honore, S.M., Aybar, M.J., and Mayor, R. (2003). Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev Biol. 260, 7996.
  • Hou, L., Loftus, S.K., Incao, A., Chen, A., and Pavan, W.J. (2004). Complementation of melanocyte development in Sox10 mutant neural crest using lineage-directed gene transfer. Dev Dyn. 229, 5462.
  • Huang, W., Zhou, X., Lefebvre, V., and de Crombrugghe, B. (2000). Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer. Mol Cell Biol. 20, 41494158.
  • Huang, W., Chung, U.I., Kronenberg, H.M., and de Crombrugghe, B. (2001). The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. Proc Natl Acad Sci USA. 98, 160165.
  • Huang, W., Lu, N., Eberspaecher, H., and de Crombrugghe, B. (2002). A new long form of c-Maf cooperates with Sox9 to activate the type II collagen gene. J Biol Chem. 277, 5066850675.
  • Huber, W.E., Price, R., Widlund, H.R., Du, J., Davis, I.J., Wegner, M., and Fisher, D.E. (2003). A tissue restricted cAMP transcriptional response: SOX10 modulates MSH-triggered expression of MITF in melanocytes. J Biol Chem. 278, 4522445230.
  • Hur, E.-H., Hur, W., Choi, J.-Y., Kim, I.-K., Kim, H.-Y., Yoon, S.K., and Rhim, H. (2004). Functional identification of the pro-apoptotic effector domain in human Sox4. Biochem Biophys Res Comm. 325, 5967.
  • Inoue, K., Khajavi, M., Ohyama, T., Hirabayashi, S.-I., Wilson, J., Reggin, J.D., Mancias, P., Butler, I.J., Wilkinson, M.F., Wegner, M. et al. (2004). Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet. 36, 361369.
  • Irrthum, A., Devriendt, K., Chitayat, D., Matthijs, G., Glade, C., Steijlen, P.M., Fryns, J.-P., Van Steensel, M.A.M., and Vikkula, M. (2003). Mutations in the transcription factor gene Sox18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet. 72, 14701478.
  • Jiao, Z., Mollaaghababa, R., Pavan, W.J., Antonellis, A., Green, E.D., and Hornyak, T.J. (2004). Direct interaction of Sox10 with the promoter of murine Dopachrome Tautomerase (Dct) and synergistic activation of Dct expression with Mitf. Pigment Cell Res. 17, 352362.
  • Kamachi, Y., Uchikawa, M., Collignon, J., Lovell-Badge, R., and Kondoh, H. (1998). Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development. 125, 25212532.
  • Kamachi, Y., Uchikawa, M., and Kondoh, H. (2000). Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 16, 182187.
  • Kamachi, Y., Uchikawa, M., Tanouchi, A., Sekido, R., and Kondoh, H. (2001). Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev. 15, 12721286.
  • Kamaraju, A., Bertolotto, C., Chebath, J., and Revel, M. (2002). Pax3 down-regulation and shut-off of melanogenesis in melanoma B16/F10.9 by interleukin-6 receptor signaling. J Biol Chem. 277, 1513215141.
  • Kapur, R.P. (1999). Early death of neural crest cells is responsible for total enteric aganglionosis in Sox10(Dom)/Sox10(Dom) mouse embryos. Pediatr Dev Pathol. 2, 559569.
  • Khong, H.T., and Rosenberg, S.A. (2002). The Waardenburg syndrome type 4 gene, SOX10, is a novel tumor- associated antigen identified in a patient with a dramatic response to immunotherapy. Cancer Res. 62, 30203023.
  • Kim, J., Lo, L., Dormand, E., and Anderson, D.J. (2003). SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron. 38, 1731.
  • Kolettas, E., Muir, H.I., Barrett, J.C., and Hardingham, T.E. (2001). Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox9 transcription factor. Rheumatology. 40, 11461156.
  • Kuhlbrodt, K., Herbarth, B., Sock, E., Enderich, J., Hermans-Borgmeyer, I., and Wegner, M. (1998a ). Cooperative function of POU proteins and Sox proteins in glial cells. J Biol Chem. 273, 1605016057.
  • Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I., and Wegner, M. (1998b ). Sox10, a novel transcriptional modulator in glial cells. J Neurosci. 18, 237250.
  • Lang, D., and Epstein, J.A. (2003). Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet. 12, 937945.
  • Laudet, V., Stehelin, D., and Clevers, H. (1993). Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res. 21, 24932501.
  • Lee, M., Goodall, J., Verastegui, C., Ballotti, R., and Goding, C.R. (2000). Direct regulation of the microphthalmia promoter by Sox10 links Waardenburg-Shah snydrome (WS4)-associated hypopigmentation and deafness to WS2. J Biol Chem. 275, 3797837983.
  • Lefebvre, V., Huang, W., Harley, V.R., Goodfellow, P.N., and DeCrombrugghe, B. (1997). Sox9 is a potent activator of the chondrocyte-specific enhancer of the proα1(II) collagen gene. Mol Cell Biol. 17, 23362346.
  • Lefebvre, V., Li, P., and de Crombrugghe, B. (1998). A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 17, 57185733.
  • Ludwig, A., Rehberg, S., and Wegner, M. (2004). Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett. 556, 236244.
  • Maka, M., Stolt, C.C., and Wegner, M. (2005). Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular defect. Dev Biol. 277, 155169.
  • Murakami, S., Kan, M., McKeehan, W.L., and de Crombrugghe, B. (2000a ). Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 97, 11131118.
  • Murakami, S., Lefebvre, V., and de Crombrugghe, B. (2000b ). Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha. J Biol Chem. 275, 36873692.
  • Murakami, A., Ishida, S., Thurlow, J., Revest, J.M., and Dickson, C. (2001). SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Res. 29, 33473355.
  • Ng, L.-J., Wheatley, S., Muscat, G.E.O., Conway-Campbell, J., Bowles, J., Wright, E., Bell, D.M., Tam, P.P.L., Cheah, K.S.E., and Koopman, P. (1997). SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol. 183, 108121.
  • Nishimoto, M., Fukushima, A., Okuda, A., and Muramatsu, M. (1999). The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol Cell Biol. 19, 54535465.
  • Nowling, T., Bernadt, C., Johnson, L., Desler, M., and Rizzino, A. (2003). The co-activator p300 associates physically with and can mediate the action of the distal enhancer of the FGF-4 gene. J Biol Chem. 278, 1369613705.
  • Okubo, Y., and Reddi, A.H. (2003). Thyroxine downregulates Sox9 and promotes chondrocyte hypertrophy. Biochem Biophys Res Comm. 306, 186190.
  • Panda, D.K., Miao, D., Lefebvre, V., Hendy, G.N., and Goltzman, D. (2001). The transcription factor SOX9 regulates cell cycle and differentiation genes in chondrocytic CFK2 cells. J Biol Chem. 276, 4122941236.
  • Paratore, C., Goerich, D.E., Suter, U., Wegner, M., and Sommer, L. (2001). Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development. 128, 39493961.
  • Peirano, R.I., and Wegner, M. (2000). The glial transcription factor Sox10 binds to DNA both as monomer and dimer with different functional consequences. Nucleic Acids Res. 28, 30473055.
  • Peirano, R.I., Goerich, D.E., Riethmacher, D., and Wegner, M. (2000). Protein zero expression is regulated by the glial transcription factor Sox10. Mol Cell Biol. 20, 31983209.
  • Pennisi, D., Bowles, J., Nagy, A., Muscat, G., and Koopman, P. (2000a ). Mice null for sox18 are viable and display a mild coat defect. Mol Cell Biol. 20, 93319336.
  • Pennisi, D., Gardner, J., Chambers, D., Hosking, B., Peters, J., Muscat, G., Abbott, C., and Koopman, P. (2000b ). Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nat Genet. 24, 434437.
  • Pingault, V., Bondurand, N., Kuhlbrodt, K., Goerich, D.E., Prehu, M.-O., Puliti, A., Herbarth, B., Hermans-Borgmeyer, I., Legius, E., Matthijs, G. et al. (1998). Sox10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet. 18, 171173.
  • Pontiggia, A., Rimini, R., Harley, V.R., Goodfellow, P.N., Lovell-Badge, R., and Bianchi, M.E. (1994). Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J. 13, 61156124.
  • Potterf, B.S., Furumura, M., Dunn, K.J., Arnheiter, H., and Pavan, W.J. (2000). Transcription factor hierarchy in Waardenburg syndrome:regulation of MITF expression by SOX10 and PAX3. Hum Genet. 107, 16.
  • Potterf, S.B., Mollaaghababa, R., Hou, L., Southard-Smith, E.M., Hornyak, T.J., Arnheiter, H., and Pavan, W.J. (2001). Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase. Dev Biol. 237, 245257.
  • Poulat, F., Girard, F., Chevron, M.-P., Goze, C., Rebillard, X., Calas, B., Lamb, N., and Berta, P. (1995). Nuclear localization of the testis determining gene product SRY. J Cell Biol. 128, 737748.
  • Qin, Y., Kong, L.K., Poirier, C., Truong, C., Overbeek, P.A., and Bishop, C.E. (2004). Long-range activation of Sox9 in Odd Sex (Ods) mice. Hum Mol Genet. 13, 12131218.
  • Read, A.P., and Newton, V.E. (1997). Waardenburg syndrome. J Med Genet. 34, 656665.
  • Rehberg, S., Lischka, P., Glaser, G., Stamminger, S., Wegner, M., and Rosorius, O. (2002). Sox10 is an active nucleocytoplasmic shuttling protein and shuttling is required for Sox10-mediated transactivation. Mol Cell Biol. 22, 58265834.
  • Remenyi, A., Lins, K., Nissen, L.J., Reinbold, R., Schöler, H.R., and Wilmanns, M. (2003). Crystal structure of a POU/HMG/DNA ternary complex suggests differential assemby of Oct4 and Sox2 on two enhancers. Genes Dev. 17, 20482059.
  • de Santa Barbara, P., Moniot, B., Poulat, F., and Berta, P. (2000). Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development. Dev Dyn. 217, 293298.
  • Scaffidi, P., and Bianchi, M.E. (2001). Spatially precise DNA bending is an essential activity of the Sox2 transcription factor. J Biol Chem. 276, 4729647302.
  • Schaefer, J.F., Milham, M.L., de Crombrugghe, B., and Buckbinder, L. (2003). FGF signaling antagonizes cytokine-mediated repression of Sox9 in SW1353 chondrosarcoma cells. OsteoArthritis Cartilage. 11, 233241.
  • Schepers, G.E., Taesdale, R.D., and Koopman, P. (2002). Twenty pairs of Sox: extent, homology, and nomenclature of the mouse and human Sox transcription factor families. Dev Cell. 3, 167170.
  • Schlierf, B., Ludwig, A., Klenovsek, K., and Wegner, M. (2002). Cooperative binding of Sox10 to DNA: requirements and consequences. Nucleic Acids Res. 30, 55095516.
  • Sekiya, I., Koopman, P., Tsuji, K., Mertin, S., Harley, V., Yamada, Y., Shinomiya, K., Nifuji, A., and Noda, M. (2001a ). Dexamethasone enhances SOX9 expression in chondrocytes. J Endocrinol. 169, 573579.
  • Sekiya, I., Koopman, P., Tsuji, K., Mertin, S., Harley, V., Yamada, Y., Shinomiya, K., Niguji, A., and Noda, M. (2001b ). Transcriptional suppression of Sox9 expression in chondrocytes by retinoic acid. J Cell Biochem. 81, 7178.
  • da Silva, S.M., Hacker, A., Harley, V., Goodfellow, P., Swain, A., and Lovellbadge, R. (1996). Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet. 14, 6268.
  • Sock, E., Schmidt, K., Hermanns-Borgmeyer, I., Bösl, M.R., and Wegner, M. (2001). Idiopathic weight reduction in mice deficient in the high-mobility-group transcription factor Sox8. Mol Cell Biol. 21, 69516959.
  • Sock, E., Pagon, R.A., Keymolen, K., Lissens, W., Wegner, M., and Scherer, G. (2003). Loss of DNA-dependent dimerization of the transcription factor SOX9 as a cause for campomelic dysplasia. Hum Mol Genet. 12, 14391447.
  • Sock, E., Rettig, S.D., Enderich, J., Bösl, M.R., Tamm, E.R., and Wegner, M. (2004). Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol. 24, 66356644.
  • Solomon, M.J., Strauss, F., and Varshavsky, A. (1986). A mammalian high mobility group protein recognizes any stretch of six A.T base pairs in duplex DNA. Proc Natl Acad Sci U S A. 83, 12761280.
  • Sonnenberg-Riethmacher, E., Miehe, M., Stolt, C.C., Goerich, D.E., Wegner, M., and Riethmacher, D. (2001). Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10. Mech Dev. 109, 253265.
  • Southard-Smith, E.M., Kos, L., and Pavan, W.J. (1998). Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet. 18, 6064.
  • Spokony, R.F., Aoki, Y., Saint-Germain, N., Magner-Fink, E., and Saint-Jeannet, J.P. (2002). The transcription factor Sox9 is required for cranial neural crest development in Xenopus. Development. 129, 421432.
  • Stolt, C.C., Rehberg, S., Ader, M., Lommes, P., Riethmacher, D., Schachner, M., Bartsch, U., and Wegner, M. (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 16, 165170.
  • Stolt, C.C., Lommes, P., Sock, E., Chaboissier, M.-C., Schedl, A., and Wegner, M. (2003). The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev. 17, 16771689.
  • Stolt, C.C., Lommes, P., Friedrich, R.P., and Wegner, M. (2004). Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development. 131, 23492358.
  • Südbeck, P., and Scherer, G. (1997). Two independent nuclear localization signals are present in the DNA-binding high-mobility group domains of SRY and Sox9. J Biol Chem. 272, 2784827852.
  • Tanaka, S., Kamachi, Y., Tanouchi, A., Hamada, H., Jing, N., and Kondoh, H. (2004). Interplay of SOX and POU factors in regulation of the nestin gene in neural primordial cells. Mol Cell Biol. 24, 88348846.
  • Tsuda, M., Takahashi, S., Takahashi, Y., and Asahara, H. (2003). Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J Biol Chem. 278, 2722427229.
  • Uchikawa, M., Ishida, Y., Takemoto, T., Kamachi, Y., and Kondoh, H. (2003). Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell. 4, 509519.
  • Uusitalo, H., Hiltunen, A., Ahonen, M., Gao, T.J., Lefebvre, V., Harley, V., Kahari, V.M., and Vuorio, E. (2001). Accelerated up-regulation of L-Sox5, Sox6, and Sox9 by BMP-2 gene transfer during murine fracture healing. J Bone Miner Res. 16, 18371845.
  • Uwanogho, D., Rex, M., Cartwright, E.J., Pearl, G., Healy, C., Scotting, P.J., and Sharpe, P.T. (1995). Embryonic Expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev. 49, 2336.
  • Verastegui, C., Bille, K., Ortonne, J.-P., and Ballotti, R. (2000). Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10. J Biol Chem. 275, 3075730760.
  • Wakamatsu, Y., Endo, Y., Osumi, N., and Weston, J.A. (2004). Multiple roles of Sox2, an HMG-box transcription factor in avian neural crest development. Dev Dyn. 229, 7486.
  • Watanabe, K., Takeda, K., Yasumoto, K., Udono, T., Saito, H., Ikeda, K., Takasaka, T., Takahashi, K., Kobayashi, T., Tachibana, M., and Shibahara, S. (2002). Identification of a distal enhancer for the melanocyte-specific promoter of the MITF gene. Pigment Cell Res. 15, 201211.
  • Wegner, M. (1999). From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27, 14091420.
  • Werner, M.H., and Burley, S.K. (1997) Architectural transcription factors: proteins that remodel DNA. Cell. 88, 733736.
  • Werner, M.H., Huth, J.R., Gronenborn, A.M., and Clore, G.M. (1995). Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution strucutre of the human SRY-DNA complex. Cell. 81, 705714.
  • Weston, A.D., Chandraratna, R.A.S., Torchia, J., and Underhill, T.M. (2002). Requirement for RAR-mediated gene repression in skeletal progenitor differentiation. J Cell Biol. 158, 3951.
  • Williams, D.C., Cai, M., and Clore, G.M. (2004). Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1:Sox2:Hoxb1-DNA ternary transcription factor complex. J Biol Chem. 279, 14491457.
  • Wunderle, V.M., Critcher, R., Hastie, N., Goodfellow, P.N., and Schedl, A. (1998). Deletion of longe-range regulatory elements upstream of SOX9 causes campomelic dysplasia. Proc Natl Acad Sci U S A. 95, 1064610654.
  • Yuan, H.B., Corbi, N., Basilico, C., and Dailey, L. (1995). Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 9, 26352645.
  • Zehentner, B.K., Haussmann, A., and Burtscher, H. (2002). The bone morphogenetic protein antagonist Noggin is regulated by Sox9 during endochondral differentiation. Dev Growth Differ. 44, 19.
  • Zeng, L., Kempf, H., Murtaugh, L.C., Sato, M.E., and Lassar, A.B. (2002). Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev. 16, 19902005.
  • Zhou, R., Bonneaud, N., Yuan, C.X., de Santa Barbara, P., Boizet, B., Tibor, S., Scherer, G., Roeder, R.G., Poulat, F., and Berta, P. (2002). SOX9 interacts with a component of the human thyroid hormone receptor- associated protein complex. Nucleic Acids Res. 30, 32453252.
  • Zhu, L., Lee, H.-O., Jordan, C.R.S., Cantrell, V.A., Southard-Smith, E.M., and Shin, M.K. (2004). Spatiotemporal regulation of endothelin receptor-B by Sox10 in neural crest-derived enteric neuron precursors. Nat Genet. 36, 732737.