SEARCH

SEARCH BY CITATION

References

  • Agrawal, D., Shajil, E.M., Marfatia, Y.S., and Begum, R. (2004). Study of the antioxidant status of vitiligo patients of different age groups in Baroda. Pigment Cell Res. 17, 289294.
  • Akyol, M., Celik, V.K., Ozcelik, S., Polat, M., Marufihah, M., and Atalay, A. (2002). The effects of vitamin E on the skin lipid peroxidation and the clinical improvement in vitiligo patients treated with PUVA. Eur. J. Dermatol. 1, 2426.
  • Alkhateeb, A., Fain, P.R., and Spritz, R.A. (2005). Candidate functional promoter variant in the FOXD3 melanoblast developmental regulator gene in autosomal dominant vitiligo. J. Invest. Dermatol. 125, 388391.
  • Aydogan, K., Turan, O.F., Onart, S., Karadogan, S.K., and Tunali, S. (2005). Audiological abnormalities in patients with vitiligo. Clin. Exp. Dermatol. 31, 110113.
  • Boissy, R.E., and Manga, P. (2004). On the etiology of contact/occupational vitiligo. Pigment Cell Res. 17, 208214.
  • Boissy, R.E., Liu, Y.Y., Medrano, E.E., and Nordlund, J.J. (1991). Structural aberration of the rough endoplasmic reticulum and melanosome compartmentalization in long-term cultures of melanocytes from vitiligo patients. J. Invest. Dermatol. 97, 395404.
  • Broquet, A.H., Thomas, G., Masliah, J., Trugnan, G., and Bachelet, M. (2003). Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J. Biol. Chem. 278, 2160121606.
  • Cario-André, M., Bessou, S., Gontier, E., Maresca, V., Picardo, M., and Taieb, A. (1999). The reconstructed epidermis with melanocytes: a new tool to study pigmentation and photoprotection. Cell. Mol. Biol. 45, 931942.
  • Casp, C.B., She, J.X., and McCormack, W.T. (2001). Genetic association of the catalase gene (CAT) with vitiligo susceptibility. Pigment Cell Res. 15, 6266.
  • Cucchi, M.L., Frattini, P., Santagostino, G., and Orecchia, G. (2000). Higher plasma catecholamine and metabolite levels in the early phase of nonsegmental vitiligo. Pigment Cell Res. 13, 2832.
  • D'Silva, P., Liu, Q., Walter, W., and Craig, E.A. (2004). Regulated interactions of mtHsp70 with Tim44 at the translocon in the mitochondrial inner membrane. Nat. Struct. Mol. Biol. 11, 10841091.
  • Dell'Anna, M.L., Maresca, V., Briganti, S., Camera, E., Falchi, M., and Picardo, M. (2001). Mitochondrial impairment in peripheral blood mononuclear cells during the active phase of vitiligo. J. Invest. Dermatol. 117, 908913.
  • Dell'Anna, M.L., Urbanelli, S., Mastrofrancesco, A., Camera, E., Iacovelli, P., Leone, G., Manini, P., D'Ischia, M., and Picardo, M. (2003). Alterations of mitochondria in peripheral blood mononulcear cells of vitiligo patients. Pigment Cell Res. 16, 553559.
  • Gauthier, Y., Cario-André, M., Lepreux, S., Pain, C., and Taieb, A. (2003a). Melanocyte detachment after skin friction in non-lesional skin of patients with generalized vitiligo. Br. J. Dermatol. 148, 95101.
  • Gauthier, Y., Cario-André, M., and Taieb, A. (2003b). A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy? Pigment Cell Res. 16, 322332.
  • Giovannelli, L., Bellandi, S., Pitozzi, V., Fabbri, P., Dolora, P., and Moretti, S. (2004). Increased oxidative DNA damage in mononuclear leukocytes in vitiligo. Mut. Res. 556, 101106.
  • Hann, S.K. (1999). A role of the nervous system in the pathogenesis of segmental vitiligo. Pigment Cell Res. 7, 26.
  • Hasse, S., Gibbons, N.C.J., Rokos, H., Marles, L.K., and Schallreuter, K.U. (2004). Perturbed 6-tetrahydrobiopterin recycling via decreased dihydropteridine reductase in vitiligo: more evidence for H2O2 stress. J. Invest. Dermatol. 122, 307313.
  • Haycock, J.W., Rowe, S.J., Cartledge, S., Wyatt, A., Ghanem, G., Morandini, R., Rennie, I.G., and MacNeil, S. (2000). a-melanocyte-stimulating hormone reduces impact of proinflammatory cytokine and peroxide-generated oxidative stress on keratinocyte and melanoma cell lines. J. Biol. Chem. 275, 1562915636.
  • Hazneci, E., Karabulut, A.B., Ozturk, C., Batcioglu, K., Dogan, G., Karaca, S., and Esrefoglu, M. (2005). A comparative study of superoxide dismutase, catalase, and glutathione peroxidase activities and nitrate levels in vitiligo patients. Int. J. Dermatol. 44, 636640.
  • Jimbow, K., Chen, H., Park, J.S., and Thomas, P.D. (2001). Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br. J. Dermatol. 144, 5565.
  • Jimenez-Cervantes, C., Martinez-Esparza, M., Perez, C., Daum, N., Solano, F., and Garcia-Borron, J. (2001). Inhibition of melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation markers and possible involvement of microphtalmia transcription factor. J. Cell. Sci. 114, 23352344.
  • Koca, R., Armutcu, F., Altinyazar, H.C., and Gurel, A. (2004). Oxidant-antioxidant enzymes and lipid peroxidation in generalized vitiligo. Exp. Dermatol. 29, 406409.
  • Kroll, T.M., Bommiasamy, H., Boissy, R.E., Hernandez, C., Nickoloff, B.J., Mestril, R., and Le Poole, I.C. (2005). 4-tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J. Invest. Dermatol. 124, 798806.
  • Kurita, K., Nishito, M., Shimogaki, H., Takada, K., Yamazaki, H., and Kunisada, T. (2005). Suppression of progressive loss of coat color in microphtalmia-vitiligo mutant mice. J. Invest. Dermatol. 125, 538544.
  • Lan, C.C., Chen, G.S., Chiou, M.H., Wu, C.S., Chang, C.H., and Yu, H.S. (2005). FK506 promotes melanocyte and melanoblast growth and creates a favourable milieu for cell migration via keratinocytes: possible mechanism of how tacrolimus ointment induces repigmentation in patients with vitiligo. Br. J. Dermatol. 153, 498505.
  • Le Poole, I.C., and Boissy, R.E. (1997). Vitiligo. Sem. Cut. Med. Surg. 16, 314.
  • Le Poole, I.C., and Das, P.K. (1997). Microscopic changes in vitiligo. Clin. Dermatol. 15, 863873.
  • Le Poole, I.C., Das, P.K., Van Den Wijngaard, R.M., Bos, J.D., and Westerhof, W. (1993). Review of the etiopathomechanism of vitiligo: a convergence theory. Exp. Dermatol. 2, 145153.
  • Le Poole, I.C., Van Den Wijingaard, R.M.J.G.J., Westerhof, W., and Das, P.K. (1997). Tenascin is overexpressed in vitiligo lesional skin and inhibits melanocyte adhesion. Br. J. Dermatol. 137, 171178.
  • Le Poole, I.C., Sarangarajan, R., Zhao, Y., Stennett, L.S., Brown, T.L., Sheth, P., Miki, T., and Boissy, R.E. (2001). ‘VIT1’, a novel gene associated with vitiligo. Pigment Cell Res. 14, 475484.
  • Le Poole, I.C., Wankowicz-Kalinska, A., Den Wijngaard, R.M., Nickoloff, B.J., and Das, P.K. (2004). Autoimmune aspects of depigmentation in vitiligo. J. Invest. Dermatol. Symp. Proc. 9, 6872.
  • Lee, A.Y., Youm, Y.H., Kim, N.H., Yang, H., and Choi, W.I. (2004). Keratinocytes in the depigmented epidermis of vitiligo are more vulnerable to trauma (suction) than keratinocytes in the normally pigmented epidermis, resulting in their apoptosis. Br. J. Dermatol. 151, 9951003.
  • Lee, Y.A., Kim, N.H., Choi, W.I., and Youm, Y.H. (2005). Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo. J. Invest. Dermatol. 124, 976983.
  • Lei, T.C., Vieira, W.D., and Hearing, V.J. (2002). In vitro migration of melanoblasts requires matrix metalloproteinase-2: implications to vitiligo therapy by photochemotherapy. Pigment Cell Res. 15, 426432.
  • Lerner, A.B., Shiohara, T., Boissy, R.E., Jacobson, K.A., Lamoreux, M.L., and Moellmann, G.E. (1986). A possible mouse model for vitiligo. J. Invest. Dermatol. 87, 299304.
  • Maresca, V., Roccella, M., Roccella, F., Camera, E., Del Porto, G., Passi, S., Grammatico, P., and Picardo, M. (1997). Increased sensitivity to peroxidative agents as possible pathogenic factor of melanocyte damage in vitiligo. J. Invest. Dermatol. 109, 310313.
  • Medrano, E.E., and Nordlund, J.J. (1990). Succesful culture of adult human melanocytes obtained from normal and vitiligo donors. J. Invest. Dermatol. 95, 441445.
  • Moellmann, G., Klein-Angerer, S., Scollay, D.A., Nordlund, J.J., and Lerner, A.B. (1982). Extracellular granular material and degeneration of keratinocytes in normally pigmented epidermis of patients with vitiligo. J. Invest. Dermatol. 79, 321330.
  • Montes, L.F., Abulafia, J., Wilborn, W.H., Hyde, B.M., and Montes, C.M. (2003). Value of histopathology in vitiligo. Int. J. Dermatol. 42, 5761.
  • Moretti, S., Spallanzani, A., Amato, L., Hautmann, G., Gallerani, I., Fabiani, M., and Fabbri, P. (2002a). New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions. Pigment Cell Res. 15, 8792.
  • Moretti, S., Spallanzani, A., Amato, L., Hautmann, G., Gallerani, I., and Fabbri, P. (2002b). Vitiligo and epidermal microenvironment: possible involvement of keratinocytes-derived cytokines. Arch. Dermatol. 138, 273274.
  • Morrone, A., Picardo, M., De Luca, C., Terminali, O., Passi, S., and Ippolito, F. (1992). Catecholamines and vitiligo. Pigment Cell Res. 5, 6569.
  • Mulekar, S.V. (2003). Melanocyte-keratinocyte cell transplantation for stable vitiligo. Int. J. Dermatol. 42, 132136.
  • Ongenae, K., Van Geel, N., and Naeyaert, J.M. (2003). Evidence for an autoimmune pathogenesis of vitiligo. Pigment Cell Res. 16, 90100.
  • Panucio, A.L., and Vignale, R. (2003). Ultrastructural studies in stable vitiligo. Am. J. Dermopathol. 25, 1620.
  • Passeron, T., and Ortonne, J.P. (2005). Physiopathology and genetics of vitiligo. J. Autoimm. 25, 6368.
  • Pelle, E., Mammone, T., Maes, D., and Frenkel, D. (2005). Keratinocytes as a source of reactive oxygen species by transferring hydrogen peroxide to melanocytes. J. Invest. Dermatol. 124, 793797.
  • Picardo, M., Passi, S., Morrone, A., Grandinetti, M., Di Carlo, A., and Ippolito, F. (1994). Antioxidant status in the blood of patients with active vitiligo. Pigment Cell Res. 7, 110115.
  • Puri, N., Mojamdar, M., and Ramaiah, A. (1987). In vitro growth characteristics of melanocytes obtained from adult normal and vitiligo subjects. J. Invest. Dermatol. 88, 434438.
  • Rokos, H., Beazley, W.D., and Schallreuter, K.U. (2002). Oxidative stress in vitiligo: photo-oxidation of pterins produces H2O2 and pterin-6-carboxylic acid. Biochem. Biophys. Res. Commun. 292, 805811.
  • Schallreuter, K.U., Wood, J.M., Pittelkow, M.R., Buttner, G., Swanson, N., Korner, C., and Erke, C. (1996). Increased monoamine oxidase A activity in the epidermis of patients with vitiligo. Arch. Dermatol. Res. 288, 1418.
  • Schallreuter, K.U., Moore, J., Wood, J.M., Beazley, W.D., Gaze, D.C., Tobin, D.J., Marshall, H.S., Panske, A., Panzig, E., and Hibberts, N.A. (1999). In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J. Invest. Dermatol. Symp. Proc. 4, 9196.
  • Schallreuter, K.U., Moore, J., Wood, J.M., Beazley, W.D., Peters, E.M.J., Marles, L.K., Behrens-Williams, S.C., Dummer, R., Blau, N., and Thony, B. (2001a). Epidermal H2O2 accumulation alters tetrahydrobiopterin (6BH4) recycling in vitiligo: identification of a general mechanism in regulation of all 6BH4-dependent processes?. J. Invest. Dermatol. 116, 167174.
  • Schallreuter, K.U., Wood, J.M., and Berger, J. (2001b). Low catalase levels in the epidermis of patients with vitiligo. J. Invest. Dermatol. 97, 10811085.
  • Schallreuter, K.U., Moore, J., Behrens-Williams, S., Panske, A., and Harari, M. (2002). Rapid initiation of repigmentation in vitiligo with dead sea climatotherapy in combination with psudocatalase (PC-KUS). Int. J. Dermatol. 41, 482487.
  • Shaffrali, F.C.G., and Gawkrodger, D.J. (2000). Management of vitiligo. Clin. Exp. Dermatol. 25, 575579.
  • Slominski, A., Paus, R., and Bomirski, A. (1989). Hypothesis: possible role for the melatonin receptor in vitiligo: discussion paper. J. R. Soc. Med. 82, 539541.
  • Spritz, R.A. (2006). The genetics of generalized vitiligo and associated autoimmune diseases. J. Dermatol. Sci. 41, 310.
  • Spritz, R.A., Gowan, K.I., Bennett, D.C., and Fain, P.R. (2004). Novel vitiligo susceptibility loci on chromosomes 7 (AIS3) and 8 (AIS3), confirmation of SLEV1 on chromosome 17, and their roles in an autoimmune diathesis. Am. J. Hum. Genet. 74, 188191.
  • Taieb, A. (2000). Intrinsic and extrinsic pathomechanisms in vitiligo. Pigment Cell Res. 13, 4147.
  • Tursen, U., Kaya, T.I., Derici, M.E.E.E., Gunduz, O., and Ikizoglu, G. (2002). Association between catechol-O-methyltransferase polymorphism and vitiligo. Arch. Dermatol. Res. 294, 143146.
  • Wankowicz-Kalinska, A., Van Den Wijngaard, R.M., Tigges, B.J., Westerhof, W., Ogg, G.S., Cerundolo, V., Storkus, W.I., and Das, P.K. (2003). Immunopolarization of CD4+ and Cd8+T cells to type-1-like is associated with melanocyte loss in human vitiligo. Lab. Invest. 83, 683695.
  • Westerhof, W., and Nieuweboer-Krobotova, L. (1997). Treatment of vitiligo with UVB radiation versus topical psoralen plus UVA. Arch. Dermatol. 133, 15251528.
  • Van Den Wijngaard, R.M, Aten, J., Scheepmaker, A., Le Poole, I.C., Tigges, A.J., Westerhof, W., and Das, P.K. (2000). Expression and modulation of apoptosis regulatory molecules in human melanocytes: significance in vitiligo. Br. J. Dermatol. 143, 573581.
  • Yang, F., and Boissy, R.E. (1999). Effects of 4-tertiary butylphenol on the tyrosinase activity in human melanocytes. Pigment Cell Res. 12, 237245.
  • Yu, H.S., Chang, K.L., Yu, C.L., Li, H.F., Wu, M.T., Wu, C.S., and Wu, C.S. (1997). Alterations in IL-6, IL-8, GM-CSF, TNF-alpha, and IFN-gamma release by peripheral manonuclear cells in patients with active vitiligo. J. Invest. Dermatol. 108, 527529.