SEARCH

SEARCH BY CITATION

References

  • Albanese, G., Bridelli, M.G., and Deriu, A. (1984). Structural dynamics of melanin investigated by Rayleigh scattering of Mossbauer radiation. Biopolymers 23, 14811498.
  • De Albuquerque, J.E., Giacomantonio, C., White, A.G., and Meredith, P. (2005). Determination of thermal & optical parameters of melanins by photopyroelectric spectroscopy. Appl. Phys. Lett. 87, 061920.
  • De Albuquerque, J.E., Giacomantonio, C., White, A.G., and Meredith, P. (2006). Study of optical properties of electropolymerised melanin films by photoelectric spectroscopy. Eur. Biophys. J. 35, 190195.
  • Al-Kazwinin, A.T., O'Neill, P., Adams, G.E., Cundall, R.B., Jacquet, B., Lang, G., and Junino, A. (1990). One-electron oxidation of methoxylated and hydroxylated indoles by N3. 1. Characterisation of the primary indolic radicals. J. Phys. Chem. 94, 66666670.
  • Armstrong, B.K., and Kricker, A. (2001). The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B. 63, 818.
  • Barker, D., Dixon, K., Medrano, E.E. et al. (1995). Comparison of the responses of human melanocytes with different melanin contents to ultraviolet B irradiation. Cancer Res. 55, 40414046.
  • Birsch, D.J.S. (2001). Multiphoton excited fluorescence spectroscopy of biomolecular systems. Spectrochimica Acta A., Mol. Biomol. Spectrosc. 57, 23132336.
  • Bochenek, K., and Gudowska-Nowak, E. (2003). Fundamental building blocks of eumelanins: electronic properties of indolequinone-dimers. Chem. Phys. Lett. 373, 532538.
  • Bolivar-Marinez, L.E., Galvao, D.S., and Caldas, M.J. (1999). Geometric and spectroscopic study of some molecules related to eumelanins. 1. Monomers. J. Phys. Chem. B 103, 29933000.
  • Borovansky, J., and Elleder, M. (2002). Melanosomes degradation: fact or fiction. Pigment Cell Res. 16, 280286.
  • Boulton, M., Rozanowska, M., and Rozanowski, B. (2001). Retinal photodamage. J. Photochem. Photobiol. B 64, 144161.
  • Bruenger, F.W., Stover, B.J., and Atherton, D.R. (1967). The incorporation of various metal ions into in vivo- and in vitro-produced melanin. Radiat. Res. 32, 112.
  • Chedekel, M.R., Smith, S.K., Post, P.W., Pokora, A., and Vessell, D.L. (1978). Photodestruction of pheomelanin: role of oxygen. Proc. Natl Acad. Sci. U.S.A. 75, 53955399.
  • Cheng, J., Moss, S.C., Eisner, M., and Zcshack, P. (1994a). X-ray characterisation of melanins-I. Pigment Cell Res. 7, 255262.
  • Cheng, J., Moss, S.C., and Eisner, M. (1994b). X-ray characterisation of melanins-II. Pigment Cell Res. 7, 263273.
  • Chio, S.S., Hyde, J.S., and Sealy, R.C. (1980). Temperature-dependent paramagnetism in melanin polymers. Arch. Biochem. Biophys. 199, 133139.
  • Chio, S.S., Hyde, J.S., and Sealy, R.C. (1982). Paramagnetism in melanins; pH dependence. Arch. Biochem. Biophys. 215, 100106.
  • Clancy, C.M.R., and Simon, J.D. (2001). Ultrastructural organization of eumelanin from sepia officinalis measured by atomic force microscopy. Biochemistry 40, 1335313360.
  • Crippa, P.R., Cristofoletti, V., and Romeo, N. (1978). A band model for melanin deduced from optical absorption and photoconductivity measurements. Biochim. Biophys. Acta 538, 164170.
  • Dunford, R., Land, E.J., Rozanowska, M., Sarna, T., and Truscott, T.G. (1995). Interaction of melanin with carbon- and oxygen-centered radicals from methanol and ethanol. Free Radic. Bio. Med. 19, 735740.
  • Felix, C.C., Hyde, J.S., Sarna, T., and Sealy, R.C. (1978a). Interactions of melanins with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals. J. Am. Chem. Soc. 100, 39223926.
  • Felix, C.C., Hyde, J.S., Sarna, T., and Sealy, R.C. (1978b). Melanin photoreactions in aerated media: electron spin resonance evidence for production of superoxide and hydrogen peroxide. Biochem. Biphys. Res. Commun. 84, 335341.
  • Felix, C.C., Hyde, J.S., and Sealy, R.C. (1979). Photoreactions of melanin: a new transient species and evidence for triplet state involvement. Biochem. Biophys. Res. Commun. 88, 456461.
  • Filatovs, J., McGinness, J., and Corry, P. (1976). Thermal and electronic contributions to switching in melanins. Biopolymers 15, 23092312.
  • Forest, S.E., and Simon, J.D. (1998). Wavelength-dependent photoacoustic calorimetry study of melanin. Photochem. Photobiol. 68, 296298.
  • Forest, S.E., Lam, W.C., Millar, D.P., Nofsinger, J.B., and Simon, J.D. (2000). A model for the activated energy transfer within eumelanin aggregates. J. Phys. Chem. B 104, 811814.
  • Froncisz, W., Sarna, T., and Hyde, J.S. (1980). Cu2+ probe of metal-ion binding sites in melanin using electron paramagnetic resonance spectroscopy. Arch. Biochem. Biophys. 202, 289303.
  • Gallas, J.M., and Eisner, M. (1987). Fluorescence of melanin – dependence upon excitation wavelength and concentration. Photochem. Photobiol. 45, 595600.
  • Gallas, J.M., Littrell, K.C., Seifert, S., Zajac, G.W., and Thiyagarajan, P. (1999). Solution structure of copper ion-induced molecular aggregates of tyrosine melanin. Biophys. J. 77, 11351142.
  • Gallas, J.M., Zajac, G.W., Sarna, T., and Slotter, P.L. (2000). Structural differences in unbleached and mildly-bleached synthetic tyrosine-derived melanins identified by scanning probe microscopies. Pigment Cell Res. 13, 99108.
  • Galvao, D.S., and Caldas, M.J. (1988). Polymerisation of 5,6-indolequinone: a view into the band structure of melanins. J. Chem. Phys. 88, 40884091.
  • Galvao, D.S., and Caldas, M.J. (1990a). Theoretical investigations of model polymers for eumelanins. I. Finite and infinite polymers. J. Chem. Phys. 92, 26302636.
  • Galvao, D.S., and Caldas, M.J. (1990b). Theoretical investigations of model polymers for eumelanins. II Isolate defects. J. Chem. Phys. 93, 28482853.
  • Gidanian, S., and Farmer, P.J. (2002). Redox behavior of melanins: direct electrochemistry of dihydroxyindole-melanin and its Cu and Zn adducts. J. Inorganic Biochem. 89, 5460.
  • Glickman, R.D., Sowell, R., and Lam, K.W. (1993). Kinetic properties of light-dependent ascorbic acid oxidation by melanin. Free Radical. Biol. Med. 15, 453457.
  • Goncalves, P.J., Bafa Filho, O., and Graeff, C.F.O. (2006). Effects of hydrogen on the electronic properties of synthetic melanin. J. Appl. Phys. 99, 104701.
  • Grishchuk, V.P., Davidenko, S.A., Zholner, I.D., Verbitskii, A.B., Kurik, M.V., and Piryatinskii, Y.P. (2002). Optical absorption and luminescent properties of melanin films. Tech. Phys. Lett. 28, 3641.
  • Haywood, R.M., and Linge, C. (2004). An experimental and theoretical model for solar UVA-irradiations of soluble eumelanin: towards modeling UVA-photoreactionsn ofm melanosomes? J. Photohcem. Photobiol. B 76, 1932.
  • Hong, L., and Simon, J.D. (2005). Physical and chemical characterization of iris and choroid melanosomes isolated from newborn and mature cows. Photochem. Photobiol. 81, 517523.
  • Hong, L., Liu, Y., and Simon, J.D. (2004). Binding of metal ions to melanin and their effects on the aerobic reactivity. Photochem. Photobiol. 80, 477481.
  • Il'ichev, Y.V., and Simon, J.D. (2003). Building blocks of eumelanin: relative stability and excitation energies of tautomers of 5,6-dihydroxyindole and 5,6-indolequinone. J. Phys. Chem. B 107, 71627171.
  • D'Ischia, M., Napolitana, A., Pezzella, A., Land, E.J., Ramsden, C.A., and Riley, P.A. (2005). 5,6-Dihydroxyindoles and indole-5,6-diones. Adv. Heterocycl. Chem. 289, 163.
  • Ito, S. (1986). Re-examination of the structure of eumelanin. Biochim. Biophys. Acta 883, 155161.
  • Jastrzebska, M.M., and Wilczok, T. (1987). Thermoelectric effect in synthetic dopa-melanin. Studia Biophys. 122, 3946.
  • Jastrzebska, M.M., Isotalo, J., Paloheimo, J., and Stubb, H. (1995). Electrical conductivity of synthetic DOPA-melanin polymer for different hydration states and temperatures. J. Biomater. Sci. Polym. Edn. 7, 577586.
  • Jastrzebska, M.M., Isotalo, J., Paloheimo, J., Stubb, H., and Pilawa, B. (1996). Effect of Cu2+ ions on the semiconductor properties of synthetic DOPA melanin polymer. J. Biomater. Sci. Polym. Edn. 7, 781793.
  • Jastrzebska, M.M., Jussila, S., and Isotalo, H. (1998). Dielectric response and a.c. conductivity of synthetic dopa-melanin polymer. J. Mat. Sci. 33, 40234028.
  • Jastrzebska, M., Kocot, A., and Tajber, L. (2002a). Photoconductivity of synthetic dopa-melanin polymer. J. Photochem. Photobiol. B, Biol. 66, 201206.
  • Jastrzebska, M.M., Kocot, A., Vij, J.K., Zalewska-Rejdak, J., and Witecki, T. (2002b). Dielectric studies on charge hopping in melanin polymer. J. Mol. Struct. 606, 205210.
  • Kalyanaraman, B., Felix, C.C., and Sealy, R.C. (1984). Photoionization and photolysis of melanins: an electron spin resonance-spin study. J. Am. Chem. Soc. 106, 73277330.
  • Kalyanaraman, B., Korytowski, W., Pilas, B., Sarna, T., Land, E.J., and Truscott, T.G. (1988). Reaction between ortho-semiquinones and oxygen: pulse radiolysis, electron spin resonance, and oxygen uptake studies. Arch. Biochem. Biophys. 266, 277284.
  • Konig, K., and Riemann, I. (2003). High –resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J. Biomed. Opt. 8, 432439.
  • Korytowski, W., and Sarna, T. (1990). Bleaching of melanin pigments: role of copper ions and hydrogen peroxide in autooxidation and photooxidation of synthetic dopa-melanin. J. Biol. Chem. 265, 1241012416.
  • Korytowski, W., Pilas, B., Sarna, T., and Kalyanaraman, B. (1987). Photoinduced generation of hydrogen peroxide and hydroxyl radicals in melanins. Photochem. Photobiol. 45, 185190.
  • Kozikowski, S.D., Wolfram, L.J., and Alfano, R.R. (1984). Fluorescence spectroscopy of eumelanins. IEEE J. Quantum Electron. QE-20, 13791382.
  • Kropf, A.J., Bunker, B.A., Isner, M., Moss, S.C., Zecca, L., Stropollo, A., and Crippa, P.R. (1998). X-ray absorption fine structure spectroscopy studies of Fe sites in natural neuromelanin and synthetic analogues. Biophys. J. 75, 31353142.
  • Kurtz, S.K. (1986). Light scattering calculations for melanin pigments from the Rayleigh to the Mie regime. J. Invest. Dermatol. 87, 400401.
  • Kwam, E., and Dahle, J. (2003). Pigmented melanocytes are protected against ultraviolet-a-induced membrane damage. J. Invest. Dermatol. 121, 564569.
  • Kwam, E., and Tyrrell, R.M. (1999). The role of melanin in the induction of oxidative DNA base damage by ultraviolet A irradiation of DNA or melanoma cells. J. Invest. Dermatol. 113, 209213.
  • Laiho, L.H., Pelet, S., Hancewicz, T.M., Kaplan, P.D., and So, P.T.C. (2005). Two-photon 3-D mapping of ex-vivo human skin endogenous fluorescence species based on fluorescence emission spectra. J. Biomed. Opt. 10, 024016.
  • Lakowicz, J.R. (1999). Principles of Fluorescence Spectroscopy, 2nd edn (New York: Kluwer Academic-Plenum Publishers).
  • Larsson, B., and Tjalve, H. (1978). Studies on the melanin affinity of metal ions. Acta. Physiol. Scand. 104, 479484.
  • Li, Y., Gonzalez, S., Terwey, T.H., Wolchok, J., Li, Y., Aranda, I., Toledo-Crow, R., and Halpern, A.C. (2005). Dual mode reflectance and fluorescence confocal laser scanning microscopy for in vivo imaging melanoma progression in murine skin. J. Invest. Dermatol. 125, 798804.
  • Liu, Y., and Simon, J.D. (2003). Isolation and biophysical studies of natural eumelanins: applications of imaging technologies and ultrafast spectroscopy. Pigment. Cell. Res. 16, 606618.
  • Liu, Y., and Simon, J.D. (2005). Metal-ion interactions and the structural organization of Sepia eumelanin. Pigment Cell Res. 18, 4248.
  • Liu, Y., Hong, L., Kempf, V.R., Wakamatsu, K., Ito, S., and Simon, J.D. (2004). Ion-exchange and adsorption of Fe(III) by Sepia melanin. Pigment Cell Res. 17, 262266.
  • Liu, Y., Hong, L., Bowers, C., Wakamatsu, K., Ito, S., and Simon, J.D. (2005). Comparison of the structural, chemical and spectroscopic properties of human black and red hair melanosomes. Photochem. Photobiol. 81, 135144.
  • Longuet-Higgins, H.C. (1960). On the origin of the free radical properties of melanin. Arch Biochim. Biophys. Acta 186, 231232.
  • Lorite, G.S., Coluci, V.R., Da Silva, M.I.N., Deziderio, S.N., Graeff, C.F.O., Galvao, D.S., and Cotta, M.A. (2006). Synthetic melanin films: assembling mechanisms, scaling behaviour, and structural properties. J. Appl. Phys. 99, 113511.
  • McGinness, J. (1972). Mobility gaps: a mechanism for band gaps in melanin. Science 177, 896897.
  • McGinness, J., Corry, P., and Proctor, P. (1974). Amorphous semiconductor switching in melanins. Science 183, 853855.
  • Meredith, P., and Riesz, J. (2004). Radiative relaxation quantum yields for synthetic eumelanin. Photochem. Photobiol. 79, 211216.
  • Meredith, P., Powell, B.J., Riesz, J., Vogel, R., Blake, D., Subianto, S., Will, G., and Kartini, I. (2005). Broad band photon-harvesting biomolecules for photovoltaics. In Artificial Photosynthesis: From Basic Biology to Industrial Application, A.F.Collings, and C.Critchley, ed. (London: Wiley), ISBN: 3-527-31090-8, ch3.
  • Meredith, P., Powell, B.J., Riesz, J., Nighswander-Rempel, S.P., Pederson, M.R., and Moore, E.G. (2006). Towards structure–property–function relationships for eumelanin. Soft Matter 2, 3744.
  • Monks, T.J., Hanzlik, R.P., Cohen, G.M., Ross, D., and Graham, G.G. (1992). Contemporary issues in toxicology. Quinone chemistry and toxicity. Appl. Pharmacol. 112, 216.
  • Mosca, L., De Marco, C., Fontana, M., and Rosei, M.A. (1999). Fluorescence properties of melanins from opioid peptides. Arch. Biochem. Biophys. 371, 6369.
  • Nicolas, C.M., Robman, L.D., Tikellis, G., Dimitrov, P.N., Dowrick, A., Guymer, R.H., and McCarty, C.A. (2003). Iris colour, ethnic origin and progression of age-related macular degeneration. Clin. Experiment. Ophthalmol. 31, 465469.
  • Nighswander-Rempel, S.P., Riesz, J., Gilmore, J., and Meredith, P. (2005a). A quantum yield map for synthetic eumelanin. J. Chem. Phys. 123, 194901.
  • Nighswander-Rempel, S.P., Riesz, J., Gilmore, J., and Meredith, P. (2005b). Quantitative fluorescence excitation spectra of synthetic eumelanin. J. Phys. Chem. B 109, 2062920635.
  • Nofsinger, J.B., and Simon, J.D. (2001). Relaxation of sepia eumelanin is affected by aggregation. Photochem. Photobiol. 74, 3137.
  • Nofsinger, J.B., Forest, S.E., and Simon, J.D. (1999). Explanation for the disparity among the absorption and action spectra of eumelanin. J. Phys. Chem. B 103, 1142811432.
  • Nofsinger, J.B., Ye, T., and Simon, J.D. (2001). Ultrafast nonradiative relaxation dynamics of eumelanin. J. Phys. Chem. B 105, 28642866.
  • Nofsinger, J.B., Liu, Y., and Simon, J.D. (2002). Aggregation of eumelanin mitigates photogeneration of reactive oxygen species. Free Radic. Biol. Med. 32, 720730.
  • Osak, W., Katarzyna, T., Czternastek, H., and Slawinski, J. (1989). I–V Characteristics and electrical conductivity of synthetic melanin. Biopolymers 28, 18851890.
  • Osak, W., Tkacz-Smiech, K., Elbanowski, M., and Slawinski, J. (1995). Dielectric and electric properties of synthetic melanin: the effect of europium ions. J. Biol. Phys. 21, 5165.
  • Pezzella, A., D'Ischia, M., Napolitano, A., Palumbo, A., and Prota, G. (1997a). An integrated approach to the structure of sepia melanin. Evidence for a high proportion of degraded 5,6-dihydroxyindole-2-carboxylic acid units in the pigment backbone. Tetrahedron 153, 82818286.
  • Pezzella, A., Napolitano, A., D'Ischia, M., Prota, G., Seraglia, R., and Traldi, P. (1997b). Identification of partially degraded oligomers of 5,6-dihydroxyindole-2-carboxylic acid in sepia melanin by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 11, 368372.
  • Pezzella, A., Vogna, D., and Prota, G. (2002). Atropoisomeric melanin intermediates by oxidation of the melanogenic precursor 5,6-dihydroxyindole-2-carboxylic acid under biomimetic conditions. Tetrahedron 58, 36813687.
  • Pilas, B., Felix, C.C., Sarna, T., and Kalyanaraman, B. (1986). Photolysis of pheomelanin precursors: an ESR-spin trapping study. Photochem. Photobiol. 44, 689696.
  • Potts, A.M., and Au, P.C. (1976). The affinity of melanin for inorganic ions. Exp. Eye Res. 22, 487491.
  • Potts, A.M., and Pinchit, A. (1967). The photoconductivity of melanin. Agressology 9, 225226.
  • Powell, B.J. (2005). 5–6-Dihydroxyindole-2-carboxylic acid: a first principles density functional study. Chem. Phys. Lett. 402, 111115.
  • Powell, M., and Rosenberg, B. (1970). The nature of charge carriers in solvated biomacromolecules. Bioenergetics 1, 493509.
  • Powell, B.J., Baruah, T., Bernstein, N., Brake, K., McKenzie, R.H., Meredith, P., and Pederson, M.R. (2004). A first principles density functional calculation of the electronic and vibrational structure of key melanin monomers. J. Chem. Phys. 120, 86088615.
  • Prota, G. (1992). Melanins and Melanogenesis (New York: Academic Press).
  • Prota, G. (2000). Melanins, melanogenesis and melanocytes: looking at their functional significance from the chemist's viewpoint. Pigment Cell Res. 13, 283293.
  • Pullman, A., and Pullman, B. (1961). The band structure of melanins. Biochim. Biophys. Acta 54, 384385.
  • Rees, J.L. (2004). The Genetics of Sun Sensitivity in Humans. Am. J. Hum. Genet. 75, 739751.
  • Reszka, K.J., Matuszak, Z., and Chignell, C.F. (1998). Lactoperoxidase-catalyzed oxidation of melanin by reactive nitrogen species derived from nitrite: an EPR study. Free Radic. Biol. Med. 25, 208216.
  • Riesz, J., Gilmore, J., and Meredith, P. (2005). Quantitative photoluminescence of broad band absorbing melanins: a procedure to correct for inner filter and re-absorption effects. Spectrochim. Acta A, Mol. Biomol. Spectrosc. 16, 21532160.
  • Riesz, J., Gilmore, J., and Meredith, P. (2006a). Quantitative scattering from melanin solutions. Biophys. J. 90, 18.
  • Riesz, J., Sarna, T., and Meredith, P. (2006b). Radiative relaxation in synthetic pheomelanin. J. Phys. Chem. B 110, 1398513990.
  • Rosei, M.A., Mosca, L., and Galluzzi, F. (1996). Photoelectronic properties of synthetic melanins. Synth. Met. 76, 331335.
  • Rosenberg, B., and Postow, E. (1969). Semiconduction in proteins and lipids – its possible biological importance. Ann. N.Y. Acad. Sci. 158, 158162.
  • Rozanowska, M., and Sarna, T. (2005). Light-induced damage to the retina: role of rhodopsin chormophore revisited. Photochem. Photobiol. 81, 3051330.
  • Rozanowska, M., Bober, A., Burke, J.M., and Sarna, T. (1997). The role of retinal pigment epithelium melanin in photoinduced oxidation of acorbate. Photchem. Photobiol. 65, 472479.
  • Różanowska, M., Sarna, T., Land, E.J., and Truscott, T.G. (1999). Free radical scavenging properties of melanin: interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic. Biol. Med. 26, 518525.
  • Różanowska, M., Korytowski, W., Różanowski, B., Skumatz, C., Boulton, M., Burke, J.M., and Sarna, T. (2002). Photoreactivity of aged human RPE melanosomes: a comparison with lipofuscin. Invest. Ophthalmol. Vis. Sci. 43, 20882096.
  • Samokhvalov, A., Liu, Y., and Simon, J.D. (2004). Characterization of the Fe(III)-binding site in Sepia eumelanin by resonance Raman confocal microspectroscopy. Photochem. Photobiol. 80, 8488.
  • Sardar, D.K., Mayo, M.L., and Glickman, R.D. (2001). Optical characterisation of melanin. J. Biomed. Opt. 6, 404411.
  • Sarna, T. (1992). Properties and function of the ocular melanin – a photobiophysical view. J. Photochem. Photobiol. B, Biol. 12, 215158.
  • Sarna, T., and Plonka, P.M. (2005). Biophysical studies of melanin: paramagnetic, ion-exchange and redox properties of melanin pigments and their photoreactivity. In Biological Magnetic Resonance, vol. 23: Biomedical EPR, Part A: Free Radicals, Metals, Medicine and Physiology, S.R.Eaton, G.R.Eaton, and L.J.Berliner, eds (New York: Kluwer Academic/Plenum Publishers), pp. 125146.
  • Sarna, T., and Sealy, R.C. (1984a). Photoinduced oxygen consumption in melanin systems: action spectra and quantum yields for eumelanin and synthetic melanin. Photochem. Phototobiol. 39, 6974.
  • Sarna, T., and Sealy, R.C. (1984b). Free radicals from eumelanins: quantum yields and wavelength dependence arch. Biochem. Biophys. 232, 574578.
  • Sarna, T., and Swartz, H.M. (1978). Identification and characterization of melanin in tissues and body fluids. Folia Histochem. Cytochem. 16, 275286.
  • Sarna, T., and Swartz, H.M. (1993). Interaction of melanin with oxygen (and related species). In Atmospheric Oxidation and Antioxidants, vol. III, G.Scott, ed. (Amsterdam: Elsevier), pp. 129169.
  • Sarna, T., and Swartz, H.M. (1998). The physical properties of melanin. In The Pigmentary System. Physiology and Pathophysiology, J.J.Nordlund, R.E.Boissy, J.V.Hearing, R.A., King, J.P., Ortonne, eds (New York: Oxford University Press), pp. 333357.
  • Sarna, T., and Swartz, H.M. (2006). The physical properties of melanins. In The Pigmentary Systems: Physiology and Pathophysiology, J.J.Nordlund, R.E.Boissy, V.J.Hearing, R.A.King, W.S.Oetting, J.-P.Ortonne, eds (Oxford: Blackwell Publishing Ltd), pp. 311341.
  • Sarna, T., Mailer, C., Hyde, J.S., Swartz, M.M., and Hoffman, M.M. (1976a). Electron-nuclear double resonance in melanins. Biophys. J. 16, 11651170.
  • Sarna, T., Hyde, J.S., and Swartz, H.M. (1976b). Ion exchange on melanins: an electron spin resonance study with lanthanide probes. Science 192, 11311134.
  • Sarna, T., Froncisz, W., and Hyde, J.S. (1980). Cu2+ probe of metal-ion binding sites in melanin using electron paramagnetic resonance spectroscopy. II. Natural melanin. Arch. Biochem. Biophys. 202, 304313.
  • Sarna, T., Korytowski, W., Pasenkiewicz-Gierula, M., and Gudowska, E. (1981). Ion-exchange studies in melanins. In Proceedings of the 11th International Pigment Cell Conference, A.Seji, ed. (Tokyo: University of Tokyo Press), pp. 2329.
  • Sarna, T., Korytowski, W., and Sealy, R.C. (1985). Nitroxides as redox probes melanins: dark-induced and photoinduced changes in redox equilibria. Arch. Biochem. Biophys. 239, 226233.
  • Sarna, T., Pilas, B., Land, E.J., and Truscott, T.G. (1986). Interaction of radicals from water radiolysis with melanin. Biochim. Biophys. Acta 883, 162167.
  • Sarna, T., Burke, J.M., Korytowski, W., Różanowska, M., Skumatz, C.M.B., Zareba, A., and Zareba, M. (2003). Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp. Eye. Res. 76, 8998.
  • Seagle, B.-L.L., Rezai, K.A., Kobori, Y., Gasyna, E.M., Rezaei, K.A., and Norris, J.R. (2005a). Melanin photoprotection in the human bretinal pigment epithelium and its correlation with light-induced cell apoptosis. Proc. Natl Acad. Sci. U.S.A. 102, 89788983.
  • Seagle, B.-L.L., Rezai, K.A., Gasyna, E.M., Kobori, Y., Rezaei, K.A., and Norris, J.R. (2005b). Time-resolved detection of melanin free radicals quenching reactive oxygen species. J. Am. Chem. Soc. 127, 1122011221.
  • Sealy, R.C. (1984). Free radicals in melanin formation, structure and reactions. In Free radicals in molecular biology, aging and diseases, A.Armstrong, R.S.Sohal, R.G.Cutler, and T.F.Slater, eds (New York: Raven Press), pp. 6775.
  • Sealy, R.C., Felix, C.C., Hyde, J.S., and Swartz, M.M. (1980). Structure and reactivity of melanins: influence of free radicals and metal ions. In Free Radicals in Molecular Biology, Aging and Disease, D.Armstrong, R.S.Sohal, R.G.Cutler, and T.F.Slater, eds (New York: Raven Press), pp. 6775.
  • Sealy, R.C., Hyde, J.S., Felix, C.C., Menon, L.A., and Prota, G. (1982a). Eumelanins and pheomelanins: characterization by electron spin resonance spectroscopy. Science 217, 545547.
  • Sealy, R.C., Hyde, J.S., Felix, C.C., Menon, L.A., and Prota, G., Swartz, H.M., Persad, S., and Haberman, H.F. (1982b). Novel free radical in synthetic and natural pheomelanins: distinction between dopa melanins and cysteinyldopa melanins by ESR spectroscopy. Proc. Natl Acad. Sci. U.S.A. 79, 28852889.
  • Serpentini, Ch.-L., Gauchet, C., De Montauzon, D., Comtat, M., Ginestar, J., and Paillous, N. (2000). First electrochemical investigation of the redox properties of DOPA-melanin by means of carbon paste electrode. Electrochim. Acta 45, 16631668.
  • Shima, T., Sarna, T., Swartz, H.M., Stroppolo, A., Gerbasi, R., and Zecca, L. (1997). Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: an electron paramagnetic resonance spectroscopy study. Free Radic. Biol. Med. 23, 110119.
  • Simon, J.D. (2000). Spectroscopic and dynamic studies of the epidermal chromophores trans-urocanic acid and eumelanin. Acc. Chem. Res. 33, 307313.
  • Smit, N.P., Vink, A.A., Kolb, R.M., Steenwinkel, M.J., Van Den Berg, P.T., Van Nieuwpoort, T., Roza, L., and Pavel, S. (2001). Melanin offers protection against induction of cyclobutane pyrimidine dimers and 6–4 photoproducts by UVB in cultured human melanocytes. Photochem. Photobiol. 74, 424430.
  • Stark, K.B., Gallas, J.M., Zajac, G.W., Eisner, M., and Golab, J.T. (2003a). Spectroscopic study and simulation from recent structural models for eumelanin: I. Monomers, dimers. J. Phys. Chem. B 107, 30613067.
  • Stark, K.B., Gallas, J.M., Zajac, G.W., Eisner, M., and Golab, J.T. (2003b). Spectroscopic study and simulation from recent structural models for eumelanin: II. Oligomers. J. Phys. Chem. B 107, 1155811562.
  • Stark, K.B., Gallas, J.M., Zajac, G.W., Golab, J.T., Gidanian, S., McIntire, T., and Farmer, P.J. (2005). Effect of stacking and redox state on optical absorption spectra of melanins-comparison of theoretical and experimental results. J. Phys. Chem. B 109, 19701977.
  • Sterenborg, H.J.C.M., Saarnak, A.E., Frank, R., and Motamedi, M. (1996). Evaluation of spectral correction techniques for fluorescence measurements on pigmented lesions in vivo. J. Photochem. Photobiol. B, Biol. 35, 159165.
  • Strzelecka, T. (1982). A band model for synthetic DOP-melanin. Physiol. Chem. Phys. 14, 219222.
  • Szpoganicz, B., Gidanian, S., Kong, P., and Farmer, P. (2002). Metal binding melanins: studies of colloidal dihydroxyindole-melanin, and its complexation by Cu(II) and Zn(II) ions. J. Inorganic Biochem. 89, 4553.
  • Tadokoro, T., Kobayashi, N., Zmudzka, B.Z., Ito, S., Wakamatsu, K., Yamaguchi, Y., Korossy, K.S., Miller, S.A., Beer, J.Z., and Hearing, V.J. (2003). UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin. FASEB. J. 17, 11771179.
  • Takeuchi, S., Zhang, W., Wakamatsu, K., Ito, S., Hearing, V.J., Kraemer, K.H., and Brash, D.E. (2004). Mmelanin acts as a potent UVB photosensitizer to cause an atypical mode of cell deaths in murine skin. Proc. Natl Acad. Sci. U.S.A. 101, 1507615081.
  • Teuchner, K., Ehlert, J., Freyer, W., Leupold, D., Altmeyer, P., Stucker, M., and Hoffmann, K. (2000). Fluorescence studies of melanin by stepwise two-photon femtosecond laser excitation. J. Fluoresc. 10, 275281.
  • Thathachari, Y.T., and Blois, M.S. (1969). Physical studies on melanin II. X-ray diffraction. Biophys. J. 9, 7789.
  • Thompson, A., Land, E.J., Chedekel, M.R., Subbarao, K.V., and Truscott, T.G. (1985). A pulse radiolysis investigation of the oxidation of the melanin precursors 3,4-dihydroxyphenylalanine (DOPA) and cysteinyl DOPAs. Biochim. Biophys. Acta 843, 4957.
  • Tran, M.L., Powell, B.J., and Meredith, P. (2006). Chemical and structural disorder in eumelanins: a possible explanation for broadband absorbance. Biophys. J. 90, 743752.
  • Trukhan, E.M. (1970). Investigation of the photoconductivity of the pigment epithelium of the eye. Biofizika 15, 19321935.
  • Vitkin, I.A., Woolsey, J., Wilson, B.C., and Anderson, R.R. (1994). Optical and thermal characterisation of natural (Sepia-officinalis) melanin. Photochem. Photobiol. 59, 455462.
  • Wakamatsu, K., and Ito, S. (2002). Advanced chemical methods in melanin determination. Pigment Cell Res. 15, 174183.
  • Wenczl, E., Van der Schans, G.P., Roza, L., Kolb, R.M., Timmerman, A.J., Smit, N.P., Pavel, T., and Schothorst, A.A. (1998). (Pheo)melanin phoosensitizes UVA-induced DNA damage in cultured human melanocytes. J. Invest. Dermatol. 111, 678682.
  • Wielgus, A.R., and Sarna, T. (2005). Melanin in human irides of different color and age of donors. Pigment Cell Res. 18, 454464.
  • Wlaschek, M., Tantcheva-Poor, I., Naderi, L., Ma, W., Schneider, L.A., Razi-Wolf, Z., Schuller, J., and Scharffetter-Kochanek, K. (2001). Solar UV irradiation and dermal photoaging. J. Photochem. Photobiol. B. 63, 4151.
  • Wolbarsht, M.L., Wash, A.W., and George, G. (1981). Melanin, a unique biological absorber. Appl. Opt. 20, 21842186.
  • Wood, S.R., Berwick, M., Ley, M.R., Walter, R.B., Setlow, R.B., and Timmins, G.S. (2006). UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production. Proc. Natl Acad. Sci. U.S.A. 103, 41114113.
  • Ye, T., and Simon, J.D. (2003). Comparison of the ultrafast absorption dynamics of eumelanin and pheomelanin. J. Phys. Chem. B 107, 1124011244.
  • Ye, T., Sarna, T., and Simon, J.D. (2003). Ultrafast energy transfer from bound tetra(4-N,N,N,N-trimethylanilinium)porphyrin to synthetic dopa and cysteinyldopa melanins. Photochem. Photobiol. 77, 5457.
  • Ye, T., Hong, L., Garguilo, J., Pawlak, A., Edwards, S.E., Nemanich, R.J., Sarna, T., and Simon, J.D. (2006). Photoionization thresholds of melanins obtained by free-electron laser photoelectron emission microscopy, femtosecond transient absorption spectroscopy, and EPR measurements of oxygen photoconsumption. Photochem. Photobiol., e-publication in advance of print, March, 2006.
  • Zajac, G.W., Gallas, J.M., Cheng, J., Eisner, M., Moss, S.C., and Alvarado-Swaisgood, A.E. (1994). The fundamental unit of synthetic melanin: a verification by tunnelling microscopy of X-ray scattering results. Biochim. Biophys. Acta 1199, 271278.
  • Zareba, M., Szewczyk, G., Sarna, T., Hong, L., Simon, J.D., Henry, M.M., and Burke, J.M. (2006). Effects of photodegradation on the physical and antioxidant properties of melanosomes isolated from retinal pigment epithelium. Photochem. Photobiol. 82, 10241029.
  • Zecca, L., Gallarini, M., Schunemann, V., Trautwein, A.X., Geralch, M., Riedere, P., Vezzoni, P., and Tampellinin, D. (2001). Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at difffrent ages: consequences for iron storage and neurodegenerative processes. J. Neurochem. 76, 17661773.
  • Zecca, L., Tampellini, D., Gatti, A., Crippa, R., Eisner, M., Sulzer, D., Ito, S., Fariello, R., and Gallorini, M. (2002). The neuromelanin in substantia nigra and ist interaction with metals. J. Neurol. Transm. 109, 663671.