SEARCH

SEARCH BY CITATION

References

  • Allison, D.B., Cui, X., Page, G.P., and Sabripour, M. (2006). Microarray data analysis: from disarray to consolidation and consensus. Nat. Rev. Genet., 7, 5565.
  • April, C.S., and Barsh, G.S. (2006). Skin layer-specific transcriptional profiles in normal and recessive yellow (Mc1re/Mc1re) mice. Pigment Cell Res., 19, 194205.
  • April, C.S., and Barsh, G.S. (2007). Distinct pigmentary and melanocortin 1 receptor-dependent components of cutaneous defense against ultraviolet radiation. PLoS Genet., 3, e9.
  • Bagheri, S., Nosrati, M., Li, S. et al. (2006). Genes and pathways downstream of telomerase in melanoma metastasis. Proc. Natl Acad. Sci. USA, 103, 1130611311.
  • Baldi, A., Battista, T., De Luca, A. et al. (2003). Identification of genes down-regulated during melanoma progression: a cDNA array study. Exp. Dermatol., 12, 213218.
  • Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R Stat. Soc. B, 57, 289300.
  • Berking, C., Takemoto, R., Schaider, H., Showe, L., Satyamoorthy, K., Robbins, P., and Herlyn, M. (2001). Transforming growth factor-beta1 increases survival of human melanoma through stroma remodeling. Cancer Res., 61, 83068316.
  • Bittner, M., Meltzer, P., Chen, Y. et al. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406, 536540.
  • Bloethner, S., Chen, B., Hemminki, K., Muller-Berghaus, J., Ugurel, S., Schadendorf, D., and Kumar, R. (2005). Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis, 26, 12241232.
  • Bloethner, S., Hemminki, K., Thirumaran, R.K., Chen, B., Mueller-Berghaus, J., Ugurel, S., Schadendorf, D., and Kumar, R. (2006). Differences in global gene expression in melanoma cell lines with and without homozygous deletion of the CDKN2A locus genes. Melanoma Res., 16, 297307.
  • Breslow, A. (1978). Tumor thickness in evaluating prognosis of cutaneous melanoma. Ann. Surg., 187, 440.
  • Carreira, S., Goodall, J., Denat, L., Rodriguez, M., Nuciforo, P., Hoek, K.S., Testori, A., Larue, L., and Goding, C.R. (2006). Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev., 20, 34263439.
  • Cheng, A.J., Liao, S.K., Chow, S.E., Chen, J.K., and Wang, T.C. (1997). Differential inhibition of telomerase activity during induction of differentiation in hematopoietic, melanoma, and glioma cells in culture. Biochem. Biophys. Res. Commun., 237, 438444.
  • Cheng, S.L., Huang Liu, R., Sheu, J.N., Chen, S.T., Sinchaikul, S., and Tsay, G.J. (2006). Toxicogenomics of kojic acid on gene expression profiling of A375 human malignant melanoma cells. Biol. Pharm. Bull., 29, 655669.
  • Cheng, S.L., Liu, R.H., Sheu, J.N., Chen, S.T., Sinchaikul, S., and Tsay, G.J. (2007). Toxicogenomics of A375 human malignant melanoma cells treated with arbutin. J. Biomed. Sci., 14, 87105.
  • Cozzi, S.J., Parsons, P.G., Ogbourne, S.M., Pedley, J., and Boyle, G.M. (2006). Induction of senescence in diterpene ester-treated melanoma cells via protein kinase C-dependent hyperactivation of the mitogen-activated protein kinase pathway. Cancer Res., 66, 1008310091.
  • Curtin, J.A., Fridlyand, J., Kageshita, T. et al. (2005). Distinct sets of genetic alterations in melanoma. N. Engl. J. Med., 353, 21352147.
  • Davies, H., Bignell, G.R., Cox, C. et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417, 949954.
  • De Wit, P.E., Moretti, S., Koenders, P.G., Weterman, M.A., Van Muijen, G.N., Gianotti, B., and Ruiter, D.J. (1992). Increasing epidermal growth factor receptor expression in human melanocytic tumor progression. J. Invest. Dermatol., 99, 168173.
  • De Wit, N.J., Rijntjes, J., Diepstra, J.H., Van Kuppevelt, T.H., Weidle, U.H., Ruiter, D.J., and Van Muijen, G.N. (2005). Analysis of differential gene expression in human melanocytic tumour lesions by custom made oligonucleotide arrays. Br. J. Cancer, 92, 22492261.
  • Derisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M., Chen, Y., Su, Y.A., and Trent, J.M. (1996). Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet., 14, 457460.
  • Dhomen, N., and Marais, R. (2007). New insight into BRAF mutations in cancer. Curr. Opin. Genet. Dev., 17, 3139.
  • Dome, B., Raso, E., Dobos, J. et al. (2005). Parallel expression of alphaIIbbeta3 and alphavbeta3 integrins in human melanoma cells upregulates bFGF expression and promotes their angiogenic phenotype. Int. J. Cancer, 116, 2735.
  • Dooley, T.P., Curto, E.V., Davis, R.L., Grammatico, P., Robinson, E.S., and Wilborn, T.W. (2003). DNA microarrays and likelihood ratio bioinformatic methods: discovery of human melanocyte biomarkers. Pigment Cell Res., 16, 245253.
  • Dupuy, A., and Simon, R.M. (2007). Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J. Natl Cancer Inst., 99, 147157.
  • Ehlers, J.P., Worley, L., Onken, M.D., and Harbour, J.W. (2005). DDEF1 is located in an amplified region of chromosome 8q and is overexpressed in uveal melanoma. Clin. Cancer Res., 11, 36093613.
  • Felicetti, F., Bottero, L., Felli, N., Mattia, G., Labbaye, C., Alvino, E., Peschle, C., Colombo, M.P., and Care, A. (2004). Role of PLZF in melanoma progression. Oncogene, 23, 45674576.
  • Ferrier, C.M., Van Geloof, W.L., De Witte, H.H., Kramer, M.D., Ruiter, D.J., and Van Muijen, G.N. (1998). Epitopes of components of the plasminogen activation system are re-exposed in formalin-fixed paraffin sections by different retrieval techniques. J. Histochem. Cytochem., 46, 469476.
  • Flanagan, N., Healy, E., Ray, A., Philips, S., Todd, C., Jackson, I.J., Birch-Machin, M.A., and Rees, J.L. (2000). Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation. Hum. Mol. Genet., 9, 25312537.
  • Folberg, R., Arbieva, Z., Moses, J. et al. (2006). Tumor cell plasticity in uveal melanoma: microenvironment directed dampening of the invasive and metastatic genotype and phenotype accompanies the generation of vasculogenic mimicry patterns. Am. J. Pathol., 169, 13761389.
  • Foser, S., Redwanz, I., Ebeling, M., Heizmann, C.W., and Certa, U. (2006). Interferon-alpha and transforming growth factor-beta co-induce growth inhibition of human tumor cells. Cell Mol. Life Sci., 63, 23872396.
  • Gallagher, W.M., Bergin, O.E., Rafferty, M. et al. (2005). Multiple markers for melanoma progression regulated by DNA methylation: insights from transcriptomic studies. Carcinogenesis, 26, 18561867.
  • Ghosh, R., Nadiminty, N., Fitzpatrick, J.E., Alworth, W.L., Slaga, T.J., and Kumar, A.P. (2005a). Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. J. Biol. Chem., 280, 58125819.
  • Ghosh, S., Rosenthal, R., Zajac, P., Weber, W.P., Oertli, D., Heberer, M., Martin, I., Spagnoli, G.C., and Reschner, A. (2005b). Culture of melanoma cells in 3-dimensional architectures results in impaired immunorecognition by cytotoxic T lymphocytes specific for Melan-A/MART-1 tumor-associated antigen. Ann. Surg., 242, 851857.
  • Ghosh, S., Spagnoli, G.C., Martin, I., Ploegert, S., Demougin, P., Heberer, M., and Reschner, A. (2005c). Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J. Cell. Physiol., 204, 522531.
  • Gibbons, F.D., and Roth, F.P. (2002). Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res., 12, 15741581.
  • Govindarajan, B., Sligh, J.E., Vincent, B.J. et al. (2007). Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. J. Clin. Invest., 117, 719729.
  • Greider, C.W., and Blackburn, E.H. (1987). The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell, 51, 887898.
  • Hafner, C., Breiteneder, H., Ferrone, S. et al. (2005). Suppression of human melanoma tumor growth in SCID mice by a human high molecular weight-melanoma associated antigen (HMW-MAA) specific monoclonal antibody. Int. J. Cancer, 114, 426432.
  • Haqq, C., Nosrati, M., Sudilovsky, D. et al. (2005). The gene expression signatures of melanoma progression. Proc. Natl Acad. Sci. USA, 102, 60926097.
  • Hendrix, M.J., Seftor, E.A., Meltzer, P.S., Gardner, L.M., Hess, A.R., Kirschmann, D.A., Schatteman, G.C., and Seftor, R.E. (2001). Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl Acad. Sci. USA, 98, 80188023.
  • Hoek, K., Rimm, D.L., Williams, K.R. et al. (2004). Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res., 64, 52705282.
  • Hoek, K.S., Schlegel, N.C., Brafford, P. et al. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res., 19, 290302.
  • Ioannidis, J.P. (2005a). Microarrays and molecular research: noise discovery?. Lancet, 365, 454455.
  • Ioannidis, J.P. (2005b). Why most published research findings are false. PLoS Med., 2, e124.
  • Jaeger, J., Koczan, D., Thiesen, H.J., Ibrahim, S.M., Gross, G., Spang, R., and Kunz, M. (2007). Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clin. Cancer Res., 13, 806815.
  • Jamshidi-Parsian, A., Dong, Y., Zheng, X., Zhou, H.S., Zacharias, W., and McMasters, K.M. (2005). Gene expression profiling of E2F-1-induced apoptosis. Gene, 344, 6777.
  • Jean, S., Bideau, C., Bellon, L., Halimi, G., De Meo, M., Orsiere, T., Dumenil, G., Berge-Lefranc, J.L., and Botta, A. (2001). The expression of genes induced in melanocytes by exposure to 365-nm UVA: study by cDNA arrays and real-time quantitative RT-PCR. Biochim. Biophys. Acta, 1522, 8996.
  • Jensen, E.H., Lewis, J.M., Mcloughlin, J.M., Alvarado, M.D., Daud, A., Messina, J., Enkemann, S., Yeatman, T.J., Sondak, V.K., and Riker, A.I. (2006). Down-regulation of pro-apoptotic genes is an early event in the progression of malignant melanoma. Ann. Surg. Oncol., 14, 14161423.
  • Johansson, P., Pavey, S., and Hayward, N. (2007). Confirmation of a BRAF mutation-associated gene expression signature in melanoma. Pigment Cell Res., 20, 216221.
  • Jorgensen, K., Holm, R., Maelandsmo, G.M., and Florenes, V.A. (2003). Expression of activated extracellular signal-regulated kinases 1/2 in malignant melanomas: relationship with clinical outcome. Clin. Cancer Res., 9, 53255331.
  • Karpf, A.R., Lasek, A.W., Ririe, T.O., Hanks, A.N., Grossman, D., and Jones, D.A. (2004). Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine. Mol. Pharmacol., 65, 1827.
  • Kaufmann, W.K., Nevis, K.R., Qu, P. et al. (2007). Defective cell cycle checkpoint functions in melanoma are associated with altered patterns of gene expression. J. Invest. Dermatol., doi: 10.1038/sj.jid.5700935.
  • Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science, 266, 20112015.
  • Kim, C.J., Reintgen, D.S., and Yeatman, T.J. (2002). The promise of microarray technology in melanoma care. Cancer Control, 9, 4953.
  • Kunz, M., Moeller, S., Koczan, D., Lorenz, P., Wenger, R.H., Glocker, M.O., Thiesen, H.J., Gross, G., and Ibrahim, S.M. (2003). Mechanisms of hypoxic gene regulation of angiogenesis factor Cyr61 in melanoma cells. J. Biol. Chem., 278, 4565145660.
  • Lin, S.Y., Yang, J.H., Hsia, T.C., Lee, J.H., Chiu, T.H., Wei, Y.H., and Chung, J.G. (2005). Effect of inhibition of aloe-emodin on N-acetyltransferase activity and gene expression in human malignant melanoma cells (A375.S2). Melanoma Res., 15, 489494.
  • Magnoni, C., Tenedini, E., Ferrari, F. et al. (2007). Transcriptional profiles in melanocytes from clinically unaffected skin distinguish the neoplastic growth pattern in patients with melanoma. Br. J. Dermatol., 156, 6271.
  • Maniotis, A.J., Folberg, R., Hess, A., Seftor, E.A., Gardner, L.M., Pe’er, J., Trent, J.M., Meltzer, P.S., and Hendrix, M.J. (1999). Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol., 155, 739752.
  • Manten-Horst, E., Danen, E.H., Smit, L., Snoek, M., Le Poole, I.C., Van Muijen, G.N., Pals, S.T., and Ruiter, D.J. (1995). Expression of CD44 splice variants in human cutaneous melanoma and melanoma cell lines is related to tumor progression and metastatic potential. Int. J. Cancer, 64, 182188.
  • Matichard, E., Verpillat, P., Meziani, R. et al. (2004). Melanocortin 1 receptor (MC1R) gene variants may increase the risk of melanoma in France independently of clinical risk factors and UV exposure. J. Med. Genet., 41, e13.
  • Michiels, S., Koscielny, S., and Hill, C. (2007). Interpretation of microarray data in cancer. Br. J. Cancer, 96, 11551158.
  • Miller, A.J., Du, J., Rowan, S., Hershey, C.L., Widlund, H.R., and Fisher, D.E. (2004). Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma. Cancer Res., 64, 509516.
  • Minami, T., Horiuchi, K., Miura, M. et al. (2004). Vascular endothelial growth factor- and thrombin-induced termination factor, down syndrome critical region-1, attenuates endothelial cell proliferation and angiogenesis. J. Biol. Chem., 279, 5053750554.
  • Mirmohammadsadegh, A., Baer, A., Nambiar, S., Bardenheuer, W., and Hengge, U.R. (2004). Rapid identification of dysregulated genes in cutaneous malignant melanoma metastases using cDNA technology. Cells Tissues Organs, 177, 119123.
  • Moretti, S., Pinzi, C., Berti, E., Spallanzani, A., Chiarugi, A., Boddi, V., Reali, U.M., and Giannotti, B. (1997). In situ expression of transforming growth factor beta is associated with melanoma progression and correlates with Ki67, HLA-DR and beta 3 integrin expression. Melanoma Res., 7, 313321.
  • Mori, T., Kim, J., Yamano, T., Takeuchi, H., Huang, S., Umetani, N., Koyanagi, K., and Hoon, D.S. (2005). Epigenetic up-regulation of C-C chemokine receptor 7 and C-X-C chemokine receptor 4 expression in melanoma cells. Cancer Res., 65, 18001807.
  • Muthusamy, V., Duraisamy, S., Bradbury, C.M., Hobbs, C., Curley, D.P., Nelson, B., and Bosenberg, M. (2006). Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res., 66, 1118711193.
  • Niezabitowski, A., Czajecki, K., Rys, J., Kruczak, A., Gruchala, A., Wasilewska, A., Lackowska, B., Sokolowski, A., and Szklarski, W. (1999). Prognostic evaluation of cutaneous malignant melanoma: a clinicopathologic and immunohistochemical study. J. Surg. Oncol., 70, 150160.
  • Okubo, Y., Hamada, J., Takahashi, Y., Tada, M., Tsutsumida, A., Furuuchi, K., Aoyama, T., Sugihara, T., and Moriuchi, T. (2002). Transduction of HOXD3-antisense into human melanoma cells results in decreased invasive and motile activities. Clin. Exp. Metastasis, 19, 503511.
  • Onken, M.D., Worley, L.A., Ehlers, J.P., and Harbour, J.W. (2004). Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res., 64, 72057209.
  • Onken, M.D., Worley, L.A., Davila, R.M., Char, D.H., and Harbour, J.W. (2006). Prognostic testing in uveal melanoma by transcriptomic profiling of fine needle biopsy specimens. J. Mol. Diagn., 8, 567573.
  • Packer, L.M., Pavey, S.J., Boyle, G.M., Stark, M.S., Ayub, A.L., Rizos, H., and Hayward, N.K. (2007). Gene expression profiling in melanoma identifies novel downstream effectors of p14ARF. Int. J. Cancer, 121, 784790.
  • Padovan, E., Terracciano, L., Certa, U., Jacobs, B., Reschner, A., Bolli, M., Spagnoli, G.C., Borden, E.C., and Heberer, M. (2002). Interferon stimulated gene 15 constitutively produced by melanoma cells induces e-cadherin expression on human dendritic cells. Cancer Res., 62, 34533458.
  • Pavey, S., Johansson, P., Packer, L. et al. (2004). Microarray expression profiling in melanoma reveals a BRAF mutation signature. Oncogene, 23, 40604067.
  • Pavlidis, P., Li, Q., and Noble, W.S. (2003). The effect of replication on gene expression microarray experiments. Bioinformatics, 19, 16201627.
  • Pawitan, Y., Michiels, S., Koscielny, S., Gusnanto, A., and Ploner, A. (2005). False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics, 21, 30173024.
  • Pollock, P.M., Harper, U.L., Hansen, K.S. et al. (2003). High frequency of BRAF mutations in nevi. Nat. Genet., 33, 1920.
  • Roberts, D.W., Newton, R.A., Beaumont, K.A., Helen Leonard, J., and Sturm, R.A. (2006). Quantitative analysis of MC1R gene expression in human skin cell cultures. Pigment Cell Res., 19, 7689.
  • Rothhammer, T., and Bosserhoff, A.K. (2007). Epigenetic events in malignant melanoma. Pigment Cell Res., 20, 92111.
  • Ryu, B., Kim, D.S., Deluca, A.M., and Alani, R.M. (2007). Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS ONE, 2, e594.
  • Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467470.
  • Schick, N., Oakeley, E.J., Hynes, N.E., and Badache, A. (2004). TEL/ETV6 is a signal transducer and activator of transcription 3 (Stat3)-induced repressor of Stat3 activity. J. Biol. Chem., 279, 3878738796.
  • Seftor, R.E., Seftor, E.A., Koshikawa, N., Meltzer, P.S., Gardner, L.M., Bilban, M., Stetler-Stevenson, W.G., Quaranta, V., and Hendrix, M.J. (2001). Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res., 61, 63226327.
  • Seftor, E.A., Meltzer, P.S., Kirschmann, D.A., Pe’er, J., Maniotis, A.J., Trent, J.M., Folberg, R., and Hendrix, M.J. (2002). Molecular determinants of human uveal melanoma invasion and metastasis. Clin. Exp. Metastasis, 19, 233246.
  • Seykora, J.T., Jih, D., Elenitsas, R., Horng, W.H., and Elder, D.E. (2003). Gene expression profiling of melanocytic lesions. Am. J. Dermatopathol., 25, 611.
  • Shiraishi, K., Yamasaki, K., Nanba, D., Inoue, H., Hanakawa, Y., Shirakata, Y., Hashimoto, K., and Higashiyama, S. (2007). Pre-B-cell leukemia transcription factor 1 is a major target of promyelocytic leukemia zinc-finger-mediated melanoma cell growth suppression. Oncogene, 26, 339348.
  • Silye, R., Karayiannakis, A.J., Syrigos, K.N. et al. (1998). E-cadherin/catenin complex in benign and malignant melanocytic lesions. J. Pathol., 186, 350355.
  • Smith, A.P., Hoek, K., and Becker, D. (2005). Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biol. Ther., 4, 10181029.
  • Suyama, E., Minoshima, H., Kawasaki, H., and Taira, K. (2002). Identification of AP-2-regulated genes by macroarray profiling of gene expression in human A375P melanoma. Nucleic Acids Res. Suppl., 2, 247248.
  • Talantov, D., Mazumder, A., Yu, J.X., Briggs, T., Jiang, Y., Backus, J., Atkins, D., and Wang, Y. (2005). Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin. Cancer Res., 11, 72347242.
  • Tsai, C.A., Hsueh, H.M., and Chen, J.J. (2003). Estimation of false discovery rates in multiple testing: application to gene microarray data. Biometrics, 59, 10711081.
  • Tsavachidou, D., Coleman, M.L., Athanasiadis, G., Li, S., Licht, J.D., Olson, M.F., and Weber, B.L. (2004). SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res., 64, 55565559.
  • Tschentscher, F., Husing, J., Holter, T. et al. (2003). Tumor classification based on gene expression profiling shows that uveal melanomas with and without monosomy 3 represent two distinct entities. Cancer Res., 63, 25782584.
  • Vaisanen, A., Kallioinen, M., Taskinen, P.J., and Turpeenniemi-Hujanen, T. (1998). Prognostic value of MMP-2 immunoreactive protein (72 kD type IV collagenase) in primary skin melanoma. J. Pathol., 186, 5158.
  • Valery, C., Grob, J.J., and Verrando, P. (2001). Identification by cDNA microarray technology of genes modulated by artificial ultraviolet radiation in normal human melanocytes: relation to melanocarcinogenesis. J. Invest. Dermatol., 117, 14711482.
  • Van Belle, P.A., Elenitsas, R., Satyamoorthy, K. et al. (1999). Progression-related expression of beta3 integrin in melanomas and nevi. Hum. Pathol., 30, 562567.
  • Van Der Velden, P.A., Zuidervaart, W., Hurks, M.H. et al. (2003). Expression profiling reveals that methylation of TIMP3 is involved in uveal melanoma development. Int. J. Cancer, 106, 472479.
  • Van Kempen, L.C., Van Den Oord, J.J., Van Muijen, G.N., Weidle, U.H., Bloemers, H.P., and Swart, G.W. (2000). Activated leukocyte cell adhesion molecule/CD166, a marker of tumor progression in primary malignant melanoma of the skin. Am. J. Pathol., 156, 769774.
  • Vignjevic, D., Kojima, S., Aratyn, Y., Danciu, O., Svitkina, T., and Borisy, G.G. (2006). Role of fascin in filopodial protrusion. J. Cell Biol., 174, 863875.
  • Vogl, A., Sartorius, U., Vogt, T., Roesch, A., Landthaler, M., Stolz, W., and Becker, B. (2005). Gene expression profile changes between melanoma metastases and their daughter cell lines: implication for vaccination protocols. J. Invest. Dermatol., 124, 401404.
  • Voisey, J., Kelly, G., and Van Daal, A. (2003). Agouti signal protein regulation in human melanoma cells. Pigment Cell Res., 16, 6571.
  • Wang, E., Miller, L.D., Ohnmacht, G.A. et al. (2002). Prospective molecular profiling of melanoma metastases suggests classifiers of immune responsiveness. Cancer Res., 62, 35813586.
  • Wang, X., Wang, M., Amarzguioui, M., Liu, F., Fodstad, O., and Prydz, H. (2004). Downregulation of tissue factor by RNA interference in human melanoma LOX-L cells reduces pulmonary metastasis in nude mice. Int. J. Cancer, 112, 9941002.
  • Winnepenninckx, V., Lazar, V., Michiels, S. et al. (2006). Gene expression profiling of primary cutaneous melanoma and clinical outcome. J. Natl Cancer Inst., 98, 472482.
  • Worley, L.A., Onken, M.D., Person, E., Robirds, D., Branson, J., Char, D.H., Perry, A., and Harbour, J.W. (2007). Transcriptomic versus chromosomal prognostic markers and clinical outcome in uveal melanoma. Clin. Cancer Res., 13, 14661471.
  • Xi, Y., Nakajima, G., Hamil, T., Fodstad, O., Riker, A., and Ju, J. (2006). Association of insulin-like growth factor binding protein-3 expression with melanoma progression. Mol. Cancer Ther., 5, 30783084.
  • Yang, G., Zhang, G., Pittelkow, M.R., Ramoni, M., and Tsao, H. (2006). Expression profiling of UVB response in melanocytes identifies a set of p53-target genes. J. Invest. Dermatol., 126, 24902506.
  • Zhao, X., Demary, K., Wong, L., Vaziri, C., Mckenzie, A.B., Eberlein, T.J., and Spanjaard, R.A. (2001). Retinoic acid receptor-independent mechanism of apoptosis of melanoma cells by the retinoid CD437 (AHPN). Cell Death Differ., 8, 878886.
  • Zuidervaart, W., Van Der Velden, P.A., Hurks, M.H., Van Nieuwpoort, F.A., Out-Luiting, C.J., Singh, A.D., Frants, R.R., Jager, M.J., and Gruis, N.A. (2003). Gene expression profiling identifies tumour markers potentially playing a role in uveal melanoma development. Br. J. Cancer, 89, 19141919.