Get access

The role of sirtuin 1 in osteoblastic differentiation in human periodontal ligament cells

Authors


Eun-Cheol Kim, DDS, PhD, Department of Maxillofacial Tissue Regeneration, School of Dentistry, Kyung Hee University, #1 Heogi-dong, Dongdaemoon-gu, Seoul 130-701, Korea
Tel: +82 2 961 0746
Fax: +82 2 960 1457
e-mail: eckim@khu.ac.kr

Abstract

Lee Y-M, Shin S-I, Shin K-S, Lee Y-R, Park B-H, Kim E-C. The role of sirtuin 1 in osteoblastic differentiation in human periodontal ligament cells. J Periodont Res 2011; 46: 712–721. © 2011 John Wiley & Sons A/S

Background and Objective:  Activation of sirtuin 1 (SIRT1) promotes the differentiation of keratinocytes and mesenchymal stem cells, but inhibits the differentiation of muscle and fat cells. However, the involvement of SIRT1 in the differentiation of human periodontal ligament cells into osteoblast-like cells remains unclear. To identify the role of SIRT1 in human periodontal ligament cells, we measured SIRT1 mRNA and SIRT1 protein levels during the osteoblastic differentiation of human periodontal ligament cells. Additionally, we investigated the effects of overexpressing and underexpressing SIRT1 on the differentiation of human periodontal ligament cells, and the signaling mechanisms involved.

Material and Methods:  Expression of SIRT1 and osteoblastic differentiation markers was assessed by RT-PCR, real-time PCR, Alizarin red staining and western blotting.

Results:  Marked upregulation of SIRT1 mRNA and SIRT1 protein was observed in cells grown for 3 d in osteogenic induction medium (OM). Activation of SIRT1 using resveratrol and isonicotinamide stimulated osteoblastic differentiation in a dose-dependent manner, as assessed by the expression of mRNAs encoding alkaline phosphatase, osteopontin, osteocalcin, osterix and Runx2, and induced calcium deposition. In contrast, inhibition of SIRT1 using sirtinol, nicotinamide and gene silencing by RNA interference suppressed mineralization and the expression of osteoblast marker mRNAs. Further mechanistic studies revealed that resveratrol treatment increased the phosphorylation of Akt, adenosine monophosphate kinase (AMPK), Smad 1/5/8 and c-Jun N-terminal kinase, but reduced OM-induced activation of nuclear factor-κB. Conversely, application of sirtinol suppressed the phosphorylation of Akt, AMPK, Smad 1/5/8, p38, ERK and c-Jun N-terminal kinase, and enhanced nuclear factor-κB activity, in OM-stimulated cells.

Conclusion:  These data suggest that SIRT1 is a potent regulator of differentiation of human periodontal ligament cells and may have clinical implications for periodontal bone regeneration.

Ancillary