SEARCH

SEARCH BY CITATION

Keywords:

  • apoptosis;
  • DNA synthesis;
  • interleukin-6;
  • LL-37;
  • monocyte chemoattractant protein-1;
  • periodontal ligament cell

Jönsson D, Nilsson B-O. The antimicrobial peptide LL-37 is anti-inflammatory and proapoptotic in human periodontal ligament cells. J Periodont Res 2012; 47: 330–335. © 2011 John Wiley & Sons A/S

Background and Objective:  The antimicrobial peptide LL-37 is expressed in periodontal tissue, and variations in LL-37 levels have been associated with periodontal disease. The effects of LL-37 on periodontal ligament cell function have not been described before. Here, we assess anti-inflammatory properties of LL-37 and investigate the effects of LL-37 on cell differentiation, cell proliferation and apoptosis in human periodontal ligament cells.

Material and Methods:  Periodontal ligament cells were obtained from teeth extracted for orthodontic reasons. Cytokine (interleukin-6) and chemokine (monocyte chemoattractant protein-1) expression was determined by quantitative PCR, cell differentiation by alkaline phosphatase activity, cell proliferation by counting cells in a Bürker chamber, DNA synthesis by incorporation of radiolabeled thymidine and apoptosis by cell morphology and activated caspase 3 quantities.

Results:  Treatment with 0.1 and 1 μm of LL-37 totally reversed lipopolysaccharide-induced monocyte chemoattractant protein-1 expression and suppressed lipopolysaccharide-induced interleukin-6 expression by 50–70%. LL-37 had no effect on alkaline phosphatase activity. Incubation with 8 μm LL-37 strongly reduced cell number. DNA synthesis was attenuated by about 90% in response to 8 μm LL-37, confirming its antiproliferative effect. Cell morphology was altered in an apoptosis-like fashion in cells treated with 8 μm LL-37. Furthermore, the quantity of activated caspase 3 was increased in cells treated with 1 and 8 μm of LL-37, suggesting apoptosis.

Conclusion:  LL-37 strongly attenuates lipopolysaccharide-induced cytokine and chemokine expression and, in high concentrations, reduces cell proliferation through inhibition of DNA synthesis and by promoting apoptosis in human periodontal ligament cells.