Successively postadministered melatonin prevents disruption of hepatic antioxidant status in rats with bile duct ligation

Authors


Address reprint requests to Yoshiji Ohta, Department of Chemistry, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
E-mail: yohta@fujita-hu.ac.jp

Abstract

Abstract:  We have reported that orally administered melatonin exerts a therapeutic effect on cholestatic liver injury in rats treated with bile duct ligation (BDL) possibly through its antioxidant and anti-inflammatory actions. Herein, we examined whether successively postadministered melatonin prevents the disruption of hepatic antioxidant status in BDL-treated rats. Wistar rats with BDL were killed 5 and 13 days after BDL. Melatonin (10 or 100 mg/kg body weight) was orally administered to rats with and without BDL everyday for 8 days, starting 5 days after BDL. The hepatic concentrations of thiobarbituric acid reactive substances, an index of lipid peroxidation, and reduced glutathione increased 5 days after BDL and further increased at 13 days. Hepatic vitamin E concentration and catalase and Se-glutathione peroxidase (Se-GSH-Px) activities were similarly reduced at 5 and 13 days after BDL. Hepatic ascorbic acid concentration and the hepatic activities of Cu,Zn- and Mn-superoxide dismutases, glutathione reductase, and glucose-6-phosphate dehydrogenase decreased 13 days after BDL. Melatonin postadministered to BDL-treated rats attenuated all these changes observed at 13 days after the treatment more effectively at the higher dose than at the lower dose. Melatonin administered to BDL-untreated rats increased the hepatic Se-GSH-Px activity at both doses and the hepatic activities of Cu,Zn- and Mn-superoxide dismutases at the higher dose. These results indicate that successively postadministered melatonin at pharmacological doses prevents the disruption of hepatic antioxidant status in rats with BDL through its direct and indirect antioxidant action, which may contribute to its therapeutic effect of BDL-induced cholestatic liver injury.

Ancillary