SEARCH

SEARCH BY CITATION

References

  • 1
    Riederer BM. Some aspects of the neuronal cytoskeleton in development. Eur J Morphol 1990; 28: 347378.
  • 2
    Roberts K. Cytoplasmic microtubules and their functions. Prog Biophys Mol Biol 1974; 28: 371420.
  • 3
    Nozumi M, Nakagawa H, Miki H et al. Differential localization of WAVE isoforms in filopodia and lamellipodia of the neuronal growth cone. J Cell Sci 2003; 116: 239246.
  • 4
    Chou YH, Skalli O, Goldman RD. Intermediate filaments and cytoplasmic networking: new connections and more functions. Curr Opin Cell Biol 1997; 9: 4953.
  • 5
    Cid-Arregui A, De Hoop M, Dotti CG. Mechanisms of neuronal polarity. Neurobiol Aging 1995; 16: 239243.
  • 6
    Setou M, Hayasaka T, Yao I. Axonal transport versus dendritic transport. J Neurobiol 2004; 58: 201206.
  • 7
    Cereijido M, Robbins Es Dolan WJ et al. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 1978; 77: 853880.
  • 8
    Lankford K, Cypher C, Letourneau P. Nerve growth cone motility. Curr Opin Cell Biol 1990; 2: 8085.
  • 9
    Shea TB, Beermann ML. Respective roles of neurofilaments, microtubules, MAP1B, and tau in neurite outgrowth and stabilization. Mol Biol Cell 1994; 5: 863875.
  • 10
    Boyne LJ, Fischer I, Shea TB Role of vimentin in early stages of neuritogenesis in cultured hippocampal neurons. Int J Dev Neurosci 1996; 14: 739748.
  • 11
    Benitez-King G, Cazares F, Meza I. Synthesis and phosphorylation of cytoskeletal proteins during the in vitro biogenesis of MDCK cell monolayers. J Cell Sci 1989; 93(Pt 1): 5361.
  • 12
    Wang LH. Molecular signaling regulating anchorage-independent growth of cancer cells. Mt Sinai J Med 2004; 71: 361367.
  • 13
    Perry G, Friedman R, Kang DH et al. Antibodies to the neuronal cytoskeleton are elicited by Alzheimer paired helical filament fractions. Brain Res 1987; 420: 233242.
  • 14
    Brandt R, Lee G. Orientation, assembly, and stability of microtubule bundles induced by a fragment of tau protein. Cell Motil Cytoskeleton 1994; 28: 143154.
  • 15
    Chohan MO, Haque N, Alonso A et al. Hyperphosphorylation-induced self assembly of murine tau: a comparison with human tau. J Neural Transm 2005; 112: 10351047.
  • 16
    Garey LJ, Ong WY, Patel TS et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 1998; 65: 446453.
  • 17
    Arnold SE, Lee VM, Gur RE et al. Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci USA 1991; 88: 1085010854.
  • 18
    Rajkowska G, Miguel-Hidalgo JJ, Wei J et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45: 10851098.
  • 19
    Lee AL, Ogle WO, Sapolsky RM. Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 2002; 4: 117128.
  • 20
    Reddy RD, Yao JK. Free radical pathology in schizophrenia: a review. Prostaglandins Leukot Essent Fatty Acids 1996; 55: 3343.
  • 21
    Reiter RJ. The melatonin rhythm: both a clock and a calendar. Experientia 1993; 49: 654664.
  • 22
    Bongiorno D, Ceraulo L, Ferrugia M. et al. Localization and interactions of melatonin in dry colesterol/lecithin mixed reversed micelles used as cell membrane models. J Pineal Res 2005; 38; 292298.
  • 23
    Jou MJ, Peng TI, Reiter RJ. et al. Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress induced apoptosis in rat brain astrocytes. J Pineal Res 2004; 37: 5570.
  • 24
    Majsterek I, Gloc E, Blasiak J et al. A comparison of the action of amifostine and melatonin DNA-damaging effects and apoptosis induced by idarubicin in normal and cancer cells. J Pineal Res 2005; 38: 254263.
  • 25
    Rodriguez C, Mayo JC, Sainz RM et al. Regulation of antioxidative enzymes a significant role for melatonin. J Pineal Res 2004; 36: 19.
  • 26
    Benitez-King G, Anton-Tay F. Calmodulin mediates melatonin cytoskeletal effects. Experientia 1993; 49: 635641.
  • 27
    Benitez-King G, Ramirez-Rodriguez G, Ortiz L et al. The neuronal cytoskeleton as a potential therapeutical target in neurodegenerative diseases and schizophrenia 1. Curr Drug Targets CNS Neurol Disord 2004; 3: 515533.
  • 28
    Hardeland R, Poeggeler B. Non-vertebrate melatonin. J Pineal Res 2003; 34: 233241.
  • 29
    Maestroni GJ. The immunotherapeutic potential of melatonin. Expert Opin Investig Drugs 2001; 10: 467476.
  • 30
    Jenkins C, Samudrala R, Anderson I et al. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc Natl Acad Sci USA 2002; 99: 1704917054.
  • 31
    Sponne I, Fifre A, Drouet B et al. Apoptotic neuronal cell death induced by the non-fibrillar amyloid-beta peptide proceeds through an early reactive oxygen species-dependent cytoskeleton perturbation. J Biol Chem 2003; 278: 34373445.
  • 32
    Huerto-Delgadillo L, Anton-Tay F, Benitez-King G. Effects of melatonin on microtubule assembly depend on hormone concentration: role of melatonin as a calmodulin antagonist. J Pineal Res 1994; 17: 5562.
  • 33
    Kumagai H, Nishida E, Kotani S et al. On the mechanism of calmodulin-induced inhibition of microtubule assembly in vitro. J Biochem (Tokyo) 1986; 99: 521525.
  • 34
    Benitez-King G, Huerto-Delgadillo L, Anton-Tay F. Binding of 3H-melatonin to calmodulin 11. Life Sci 1993; 53: 201207.
  • 35
    Romero MP, Garcia-Perganeda A, Guerrero JM et al. Membrane-bound calmodulin in Xenopus laevis oocytes as a novel binding site for melatonin. FASEB J 1998; 12: 14011408.
  • 36
    Anton-Tay F, Martinez I, Tovar R et al. Modulation of the subcellular distribution of calmodulin by melatonin in MDCK cells. J Pineal Res 1998; 24: 3542.
  • 37
    Benitez-King G, Huerto-Delgadillo L, Anton-Tay F. Melatonin modifies calmodulin cell levels in MDCK and N1E-115 cell lines and inhibits phosphodiesterase activity in vitro. Brain Res 1991; 557: 289292.
  • 38
    Pozo D, Reiter RJ, Calvo JR et al. Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J Cell Biochem 1997; 65: 430442.
  • 39
    Benitez-King G, Rios A, Martinez A et al. In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin. Biochim Biophys Acta 1996; 1290: 191196.
  • 40
    Turjanski AG, Estrin DA, Rosenstein RE et al. NMR and molecular dynamics studies of the interaction of melatonin with calmodulin. Protein Sci 2004; 13: 29252938.
  • 41
    Leon J, Macias M, Escames G et al. Structure-related inhibition of calmodulin-dependent neuronal nitric-oxide synthase activity by melatonin and synthetic kynurenines. Mol Pharmacol 2000; 58: 967975.
  • 42
    Benitez-King G, Huerto-Delgadillo L, Anton-Tay F. Melatonin effects on the cytoskeletal organization of MDCK and neuroblastoma N1E-115 cells. J Pineal Res 1990; 9: 209220.
  • 43
    Ramirez-Rodriguez G, Meza I, Hernandez ME et al. Melatonin induced cyclic modulation of vectorial water transport in kidney-derived MDCK cells. Kidney Int 2003; 63: 13561364.
  • 44
    Benitez-King G. PKC activation by melatonin modulates vimentin intermediate filament organization in N1E-115 cells. J Pineal Res 2000; 29: 814.
  • 45
    Ando S, Tanabe K, Gonda Y et al. Domain-and sequence-specific phosphorylation of vimentin induces disassembly of the filament structure. Biochemistry 1989; 28: 29742979.
  • 46
    Castagna M, Takai Y, Kaibuchi K et al. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 1982; 257: 78477851.
  • 47
    Zalewski PD, Forbes IJ, Giannakis C et al. Synergy between zinc and phorbol ester in translocation of protein kinase C to cytoskeleton. FEBS Lett 1990; 273: 131134.
  • 48
    Van De Klundert FA, Raats JM, Bloemendal H. Intermediate filaments: regulation of gene expression and assembly. Eur J Biochem 1993; 214: 351366.
  • 49
    Benitez-King G, Hernandez ME, Tovar R et al. Melatonin activates PKC-alpha but not PKC-epsilon in N1E-115 cells. Neurochem Int 2001; 39: 95102.
  • 50
    Dubocovich ML, Masana MI, Iacob S et al. Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Naunyn Schmiedebergs Arch Pharmacol 1997; 355: 365375.
  • 51
    Lenk R, Ransom L, Kaufmann Y et al. A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell 1997; 10: 6778.
  • 52
    Bordt SL, Mckeon RM, Li PK et al. N1E-115 mouse neuroblastoma cells express MT1 melatonin receptors and produce neurites in response to melatonin. Biochim Biophys Acta 2001; 1499: 257264.
  • 53
    Benitez-King G, Tunez I, Bellon A et al. Melatonin prevents cytoskeletal alterations and oxidative stress induced by okadaic acid in N1E-115 cells 5. Exp Neurol 2003; 182: 151159.
  • 54
    Garcia JG, Wang P, Schaphorst KL et al. Critical involvement of p38 MAP kinase in pertussis toxin-induced cytoskeletal reorganization and lung permeability. FASEB J 2002; 16: 10641076.
  • 55
    Wu HC, Chiu CY, Huang PH et al. The association of heterotrimeric GTP-binding protein (Go) with microtubules. J Biomed Sci 2001; 8: 349358.
  • 56
    Menendez-Pelaez A, Reiter RJ. Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res 1993; 15: 5969.
  • 57
    Anton-Tay F, Ramirez G, Martinez I et al. In vitro stimulation of protein kinase C by melatonin. Neurochem Res 1998; 23: 601606.
  • 58
    Meza I, Ibarra G, Sabanero M et al. Occluding junctions and cytoskeletal components in a cultured transporting epithelium. J Cell Biol 1980; 87: 746754.
  • 59
    Meza I, Sabanero M, Stefani E et al. Occluding junctions in MDCK cells: modulation of transepithelial permeability by the cytoskeleton. J Cell Biochem 1982; 18: 407421.
  • 60
    Cereijido M, Ehrenfeld J, Fernandez-Castelo S et al. Fluxes, junctions, and blisters in cultured monolayers of epithelioid cells (MDCK). Ann N Y Acad Sci 1981; 37: 24222441.
  • 61
    Jorgensen PL, Petersen J, Rees WD. Identification of a Na+, K+, Cl− cotransport protein of Mr 34 000 from kidney by photolabeling with [3H]bumethanide. The protein is associated with cytoskeleton components. Biochim Biophys Acta 1984; 775: 105110.
  • 62
    Edelstein NG, Catterall WA, Moon RT. Identification of a 33-kilodalton cytoskeletal protein with high affinity for the sodium channel. Biochemistry 1988; 27: 18181822.
  • 63
    Cantiello HF. Changes in actin filament organization regulate Na+,K(+)-ATPase activity. Role of actin phosphorylation. Ann NY Acad Sci 1997; 834: 559561.
  • 64
    Lowndes JM, Hokin-Neaverson M, Bertics PJ. Kinetics of phosphorylation of Na+/K(+)-ATPase by protein kinase C. Biochim Biophys Acta 1990; 1052: 143151.
  • 65
    Brandt D, Gimona M, Hillmann M et al. Protein kinase C induces actin reorganization via a Src- and Rho-dependent pathway. J Biol Chem 2002; 277: 2090320910.
  • 66
    Koopman MG, Koomen GC, Krediet RT et al. Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci (Lond) 1989; 77: 105111.
  • 67
    Richardson BA, Studier EH, Stallone JN et al. Effects of melatonin on water metabolism and renal function in male Syrian hamsters (Mesocricetus auratus). J Pineal Res 1992; 13: 4959.
  • 68
    Milzani A, Dalledonne I, Colombo R. Prolonged oxidative stress on actin3. Arch Biochem Biophys 1997; 339: 267274.
  • 69
    Borg J, London J. Copper/zinc superoxide dismutase overexpression promotes survival of cortical neurons exposed to neurotoxins in vitro 2. J Neurosci Res 2002; 70: 180189.
  • 70
    Bialojan C, Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 1988; 256: 283290.
  • 71
    Arendt T, Holzer M, Bruckner MK et al. The use of okadaic acid in vivo and the induction of molecular changes typical for Alzheimer's disease. Neuroscience 1998; 85: 13371340.
  • 72
    Traore A, Ruiz S, Baudrimont I et al. Combined effects of okadaic acid and cadmium on lipid peroxidation and DNA bases modifications (m5dC and 8-(OH)-dG) in Caco-2 cells. Arch Toxicol 2000; 74: 7984.
  • 73
    Benítez-King G, Ortiz-López L, Jiménez-Rubio G. Melatonin precludes cytoskeletal collapse caused by hydrogen peroxide: Participation of protein kinase C. Therapy 2005; 2: 767778.
  • 74
    Reiter RJ, Tan DX, Pappolla MA. Melatonin relieves the neuronal oxidative burden that contributes to dementias. Ann NY Acad Sic. 2004; 1035: 179196.
  • 75
    Wu YH, Swaab DF. The human pineal gland and melatonin in aging and Alzheimer's disease. J Pineal Res 2005; 38: 145154.
  • 76
    Mishima K, Okawa M, Hishikawa Y et al. Morning bright light therapy for sleep and behavior disorders in elderly patients with dementia. Acta Psychiatr Scand 1994; 89: 17.
  • 77
    Jiang HK, Wang JY. Diurnal melatonin and cortisol secretion profiles in medicated schizophrenic patients. J Formos Med Assoc 1998; 97: 830837.
  • 78
    Cardinali DP, Brusco LI, Liberczuk C et al. The use of melatonin in Alzheimer's disease. Neuro Endocrinol Lett 2002; 23(Suppl. 1): 2023.
  • 79
    Asayama K, Yamadera H, Ito T et al. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J Nippon Med Sch 2003; 70: 334341.
  • 80
    Shamir E, Barak Y, Shalman I et al. Melatonin treatment for tardive dyskinesia: a double-blind, placebo-controlled, crossover study. Arch Gen Psychiatry 2001; 58: 10491052.