SEARCH

SEARCH BY CITATION

References

  • 1
    Lokhorst G-J. Descartes and the Pineal Gland. In: The Stanford Encyclopedia of Philosophy 2006. ZaltaEN, ed. Available at http://plato.stanford.edu/archives/spr2006/entries/pineal-gland/.
  • 2
    Lerner AM, Case JD, Takahashi Y et al. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 1958; 80:2587.
  • 3
    Bubenik GA. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci 2002; 47:23362348.
  • 4
    Pfeffer M, Kuhn R, Krug L et al. Rhythmic variation in beta1-adrenergic receptor mRNA levels in the rat pineal gland: circadian and developmental regulation. Eur J Neurosci 1998; 10:28962904.
  • 5
    Simonneaux V, Poirel VJ, Garidou ML et al. Daily rhythm and regulation of clock gene expression in the rat pineal gland. Brain Res Mol Brain Res 2004; 120:164172.
  • 6
    Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 1991; 12:151180.
  • 7
    Foulkes NS, Cermakian N, Whitmore D et al. Rhythmic transcription: the molecular basis of oscillatory melatonin synthesis. Novartis Found Symp 2000; 227:514.
  • 8
    Axelrod J, Weissbach H. Enzymatic O-methylation of N-acetylserotonin to melatonin. Science 1960; 131:1312.
  • 9
    Wurtman RJ, Axelrod J, Phillips LS. Melatonin synthesis in the pineal gland: control by light. Science 1963; 142:10711073.
  • 10
    Quay WB. Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen Comp Endocrinol 1963; 14:473479.
  • 11
    Ganguly S, Coon SL, Klein DC. Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell Tissue Res 2002; 309:127137.
  • 12
    Klein DC, Coon SL, Roseboom PH et al. The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res 1997; 52:307357.
  • 13
    Klein DC, Weller JL. Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science 1970; 169:10931095.
  • 14
    Borjigin J, Wang MM, Snyder SH. Diurnal variation in mRNA encoding serotonin N-acetyltransferase in pineal gland. Nature 1995; 378:783785.
  • 15
    Coon SL, Roseboom PH, Baler R et al. Pineal serotonin N-acetyltransferase: expression cloning and molecular analysis. Science 1995; 270:16811683.
  • 16
    Johnston JD, Bashforth R, Diack A et al. Rhythmic melatonin secretion does not correlate with the expression of arylalkylamine N-acetyltransferase, inducible cyclic amp early repressor, period1 or cryptochrome1 mRNA in the sheep pineal. Neuroscience 2004; 124:789795.
  • 17
    Liu T, Borjigin J. N-acetyltransferase is not the rate-limiting enzyme of melatonin synthesis at night. J Pineal Res 2005; 39:9196.
  • 18
    Ferry G, Ubeaud C, Lambert PH et al. Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: investigations with both indoleamine 2,3-dioxygenase and myeloperoxidase. Biochem J 2005; 388:205215.
  • 19
    Hirata F, Hayaishi O, Tokuyama T et al. In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem 1974; 249:13111313.
  • 20
    Hardeland R, Pandi-Perumal SR, Cardinali DP. Melatonin. Int J Biochem Cell Biol 2006; 38:313316.
  • 21
    Weaver DR, Stehle JH, Stopa EG et al. Melatonin receptors in human hypothalamus and pituitary: implications for circadian and reproductive responses to melatonin. J Clin Endocrinol Metab 1993; 76:295301.
  • 22
    Tamarkin L, Baird CJ, Almeida OF. Melatonin: a coordinating signal for mammalian reproduction? Science 1985; 227:714720.
  • 23
    Tan DX, Reiter RJ, Manchester LC et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2:181197.
  • 24
    Guerrero JM, Reiter RJ. Melatonin-immune system relationships. Curr Top Med Chem 2002; 2:167179.
  • 25
    Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 2005; 27:119130.
  • 26
    Leon J, Acuna-Castroviejo D, Escames G et al. Melatonin mitigates mitochondrial malfunction. J Pineal Res 2005; 38:19.
  • 27
    Reiter RJ, Tan DX. Melatonin: a novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc Res 2003; 58:1019.
  • 28
    Gitto E, Karbownik M, Reiter RJ et al. Effects of melatonin treatment in septic newborns. Pediatr Res 2001; 50:756760.
  • 29
    Yon JH, Carter LB, Reiter RJ et al. Melatonin reduces the severity of anesthesia-induced apoptotic neurodegeneration in the developing rat brain. Neurobiol Dis 2006; 21:522530.
  • 30
    Jevtovic-Todorovic V, Hartman RE, Izumi Y et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 2003; 23:876882.
  • 31
    Kostrzewa RM, Segura-Aguilar J. Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. a review. Neurotox Res 2003; 5:375383.
  • 32
    Kevin LG, Novalija E, Stowe DF. Reactive oxygen species as mediators of cardiac injury and protection: the relevance to anesthesia practice. Anesth Analg 2005; 101:12751287.
  • 33
    Reber A, Huber PR, Ummenhofer W et al. General anaesthesia for surgery can influence circulating melatonin during daylight hours. Acta Anaesthesiol Scand 1998; 42:10501056.
  • 34
    Nishimura S, Fujino Y, Shimaoka M et al. Circadian secretion patterns of melatonin after major surgery. J Pineal Res 1998; 25:7377.
  • 35
    Karkela J, Vakkuri O, Kaukinen S et al. The influence of anaesthesia and surgery on the circadian rhythm of melatonin. Acta Anaesthesiol Scand 2002; 46:3036.
  • 36
    Arendt J. Importance and relevance of melatonin to human biological rhythms. J Neuroendocrinol 2003; 15:427431.
  • 37
    Cajochen C, Krauchi K, Wirz-Justice A. Role of melatonin in the regulation of human circadian rhythms and sleep. J Neuroendocrinol 2003; 15:432437.
  • 38
    Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev 2005; 9:1124.
  • 39
    Dijk DJ, Von Schantz M. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators. J Biol Rhythms 2005; 20:279290.
  • 40
    Marczynski TJ, Yamaguchi N, Ling GM et al. Sleep induced by the administration of melatonin (5-methoxy-N-acetyltryptamine) to the hypothalamus in unrestrained cats. Experientia 1964; 20:435437.
  • 41
    Lerner AB, Case JD. Melatonin. Fed Proc 1960; 19:590592.
  • 42
    Antón-Tay F, Diaz JL, Fernandez-Guardiola A. On the effect of melatonin upon human brain. Its possible therapeutic implications. Life Sci 1971; 10:841850.
  • 43
    Clark DL, Rosner BS. Neurophysiologic effects of general anesthetics. I. The electroencephalogram and sensory evoked responses in man. Anesthesiology 1973; 38:564582.
  • 44
    Naguib M, Schmid PG III, Baker MT. The electroencephalographic effects of IV anesthetic doses of melatonin: comparative studies with thiopental and propofol. Anesth Analg 2003; 97:238243.
  • 45
    Cramer H, Rudolph J, Consbruch U et al. On the effects of melatonin on sleep and behavior in man. Adv Biochem Psychopharmacol 1974; 11:187191.
  • 46
    Wurtman RJ, Zhdanova I. Improvement of sleep quality by melatonin. Lancet 1995; 346:1491.
  • 47
    Petrie K, Conaglen JV, Thompson L et al. Effect of melatonin on jet lag after long haul flights. Br Med J 1989; 298:705707.
  • 48
    Arendt J. Melatonin. Clin Endocrinol (Oxf) 1988; 29:205229.
  • 49
    Samarkandi A, Naguib M, Riad W et al. Melatonin vs. midazolam premedication in children: a double-blind, placebo-controlled study. Eur J Anaesthesiol 2005; 22:189196.
  • 50
    Naguib M, Samarkandi AH. Premedication with melatonin: a double-blind, placebo-controlled comparison with midazolam. Br J Anaesth 1999; 82:875880.
  • 51
    Naguib M, Samarkandi AH. The comparative dose-response effects of melatonin and midazolam for premedication of adult patients: a double-blinded, placebo-controlled study. Anesth Analg 2000; 91:473479.
  • 52
    Capuzzo M, Zanardi B, Schiffino E et al. Melatonin does not reduce anxiety more than placebo in the elderly undergoing surgery. Anesth Analg 2006; 103:121123.
  • 53
    Kales A, Kales JD, Scharf MB et al. Hypnotics and altered sleep-dream patterns. II. All-night EEG studies of chloral hydrate, flurazepam, and methaqualone. Arch Gen Psychiatry 1970; 23:219225.
  • 54
    Dement WC. Objective measurements of daytime sleepiness and performance comparing quazepam with flurazepam in two adult populations using the Multiple Sleep Latency Test. J Clin Psychiatry 1991; 52(Suppl.):3137.
  • 55
    Zhdanova IV, Wurtman RJ, Lynch HJ et al. Sleep-inducing effects of low doses of melatonin ingested in the evening. Clin Pharmacol Ther 1995; 57:552558.
  • 56
    Brzezinski A, Vangel MG, Wurtman RJ et al. Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev 2005; 9:4150.
  • 57
    Sack RL, Hughes RJ, Edgar DM et al. Sleep-promoting effects of melatonin: at what dose, in whom, under what conditions, and by what mechanisms? Sleep 1997; 20:908915.
  • 58
    Naguib M, Samarkandi A, Moniem MA et al. Effects of melatonin premedication on propofol and thiopental induction dose-response curves: a prospective, randomized, double-blind study. Anesth Analg 2006: in press.
  • 59
    Budhiraja S, Singh J. Adjuvant effect of melatonin on anesthesia induced by thiopental sodium, ketamine, and ether in rats. Meth Find Exp Clin Pharmacol 2005; 27:697699.
  • 60
    Miyoshi H, Ono T, Sumikawa K. Melatonin reduces minimum alveolar concentration for isoflurane in rats. Anesthesiology 2001; 95:A-113.
  • 61
    Duranti E, Stankov B, Spadoni G et al. 2-Bromomelatonin: synthesis and characterization of a potent melatonin agonist. Life Sci 1992; 51:479485.
  • 62
    Naguib M, Hammond DL, Schmid IP et al. Pharmacological effects of intravenous melatonin: comparative studies with thiopental and propofol. Br J Anaesth 2003; 90:504507.
  • 63
    Naguib M, Baker MT, Flood P et al. Melatonin and its analogs do not induce general anesthesia by potentiating the responsiveness of postsynaptic GABA receptors. American Society of Anesthesiologists 2004; 101:A817.
  • 64
    Shavali S, Ho B, Govitrapong P et al. Melatonin exerts its analgesic actions not by binding to opioid receptor subtypes but by increasing the release of beta-endorphin an endogenous opioid. Brain Res Bull 2005; 64:471479.
  • 65
    Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 2004; 5:709720.
  • 66
    Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med 2003; 348:21102124.
  • 67
    Hemmings Jr HC, Akabas MH, Goldstein PA et al. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci 2005; 26:503510.
  • 68
    Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 1993; 78:707712.
  • 69
    Nelson LE, Guo TZ, Lu J et al. The sedative component of anesthesia is mediated by GABAA receptors in an endogenous sleep pathway. Nat Neurosci 2002; 5:979984.
  • 70
    Hofbauer RK, Fiset P, Plourde G et al. Dose-dependent effects of propofol on the central processing of thermal pain. Anesthesiology 2004; 100:386394.
  • 71
    Sukhotinsky I, Hopkins DA, Lu J et al. Movement suppression during anesthesia: neural projections from the mesopontine tegmentum to areas involved in motor control. J Comp Neurol 2005; 489:425448.
  • 72
    Stabernack C, Zhang Y, Sonner JM et al. Thiopental produces immobility primarily by supraspinal actions in rats. Anesth Analg 2005; 100:128136.
  • 73
    Harris RS, Lazar O, Johansen JW et al. Interaction of propofol and sevoflurane on loss of consciousness and movement to skin incision during general anesthesia. Anesthesiology 2006; 104:11701175.
  • 74
    Sebel LE, Richardson JE, Singh SP et al. Additive effects of sevoflurane and propofol on gamma-aminobutyric acid receptor function. Anesthesiology 2006; 104:11761183.
  • 75
    Sonner JM, Zhang Y, Stabernack C et al. GABAA receptor blockade antagonizes the immobilizing action of propofol but not ketamine or isoflurane in a dose-related manner. Anesth Analg 2003; 96:706712.
  • 76
    Hill-Venning C, Belelli D, Peters JA et al. Subunit-dependent interaction of the general anaesthetic etomidate with the γ-aminobutyric acid type A receptor. Br J Pharmacol 1997; 120:749756.
  • 77
    Flood P, Ramirez-Latorre J, Role L. α4β2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but α7-type nicotinic acetylcholine receptors are unaffected. Anesthesiology 1997; 86:859865.
  • 78
    Flood P, Krasowski MD. Intravenous anesthetics differentially modulate ligand-gated ion channels. Anesthesiology 2000; 92:14181425.
  • 79
    Lin LH, Chen LL, Zirrolli JA et al. General anesthetics potentiate γ-aminobutyric acid actions on γ-aminobutyric acidA receptors expressed by Xenopus oocytes: lack of involvement of intracellular calcium. J Pharmacol Exp Ther 1992; 263:569578.
  • 80
    Coloma FM, Niles LP. Melatonin enhancement of [3H]-γ-aminobutyric acid and [3H]muscimol binding in rat brain. Biochem Pharmacol 1988; 37:12711274.
  • 81
    Niles LP, Pickering DS, Arciszewski MA. Effects of chronic melatonin administration on GABA and diazepam binding in rat brain. J Neural Transm 1987; 70:117124.
  • 82
    Wang F, Li J, Wu C et al. The GABAA receptor mediates the hypnotic activity of melatonin in rats. Pharmacol Biochem Behav 2003; 74:573578.
  • 83
    Weaver DR, Rivkees SA, Reppert SM. Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. J Neurosci 1989; 9:25812590.
  • 84
    Siuciak JA, Fang JM, Dubocovich ML. Autoradiographic localization of 2-[125I]iodomelatonin binding sites in the brains of C3H/HeN and C57BL/6J strains of mice. Eur J Pharmacol 1990; 180:387390.
  • 85
    Lindroos OF, Veilahti J, Leinonen LM et al. Characterization of melatonin binding to the anteroventral and anterodorsal thalamic nuclei of the rat. Eur J Pharmacol 1993; 250:161163.
  • 86
    Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav Brain Sci 1999; 22:425444.
  • 87
    Aggleton JP, Pearce JM. Neural systems underlying episodic memory: insights from animal research. Phil Trans R Soc Lond B Biol Sci 2001; 356:14671482.
  • 88
    Wolff M, Gibb SJ, Dalrymple-Alford JC. Beyond spatial memory: the anterior thalamus and memory for the temporal order of a sequence of odor cues. J Neurosci 2006; 26:29072913.
  • 89
    Scheibel ME, Scheibel AB. The organization of the ventral anterior nucleus of the thalamus. A Golgi study. Brain Res 1966; 1:250268.
  • 90
    Gonzalo-Ruiz A, Lieberman AR. Topographic organization of projections from the thalamic reticular nucleus to the anterior thalamic nuclei in the rat. Brain Res Bull 1995; 37:1735.
  • 91
    Gonzalo-Ruiz A, Lieberman AR. GABAergic projections from the thalamic reticular nucleus to the anteroventral and anterodorsal thalamic nuclei of the rat. J Chem Neuroanat 1995; 9:165174.
  • 92
    Pinault D, Deschenes M. Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. J Comp Neurol 1998; 391:180203.
  • 93
    Pinault D. The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev 2004; 46:131.
  • 94
    Fuentealba P, Steriade M. The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Prog Neurobiol 2005; 75:125141.
  • 95
    Steriade M. Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 2005; 28:317324.
  • 96
    Reppert SM, Weaver DR, Ebisawa T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 1994; 13:11771185.
  • 97
    Reppert SM, Godson C, Mahle CD et al. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci U S A 1995; 92:87348738.
  • 98
    Ebisawa T, Karne S, Lerner MR et al. Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci U S A 1994; 91:61336137.
  • 99
    Reppert SM, Weaver DR, Cassone VM et al. Melatonin receptors are for the birds: molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron 1995; 15:10031015.
  • 100
    Reppert SM, Weaver DR, Godson C. Melatonin receptors step into the light: cloning and classification of subtypes. Trends Pharmacol Sci 1996; 17:100102.
  • 101
    Von Gall C, Stehle JH, Weaver DR. Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res 2002; 309:151162.
  • 102
    Roca AL, Godson C, Weaver DR et al. Structure, characterization, and expression of the gene encoding the mouse Mel1a melatonin receptor. Endocrinology 1996; 137:34693477.
  • 103
    Stewart LS, Leung LS. Hippocampal melatonin receptors modulate seizure threshold. Epilepsia 2005; 46:473480.
  • 104
    Al-Ghoul WM, Herman MD, Dubocovich ML. Melatonin receptor subtype expression in human cerebellum. Neuroreport 1998; 9:40634068.
  • 105
    Uz T, Arslan AD, Kurtuncu M et al. The regional and cellular expression profile of the melatonin receptor MT1 in the central dopaminergic system. Brain Res Mol Brain Res 2005; 136:4553.
  • 106
    Savaskan E, Olivieri G, Meier F et al. Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer's disease patients. J Pineal Res 2002; 32:5962.
  • 107
    Mazzucchelli C, Pannacci M, Nonno R et al. The melatonin receptor in the human brain: cloning experiments and distribution studies. Brain Res Mol Brain Res 1996; 39:117126.
  • 108
    Savaskan E, Ayoub MA, Ravid R et al. Reduced hippocampal MT2 melatonin receptor expression in Alzheimer's disease. J Pineal Res 2005; 38:1016.
  • 109
    Masana MI, Dubocovich ML. Melatonin receptor signaling: finding the path through the dark. Sci STKE 2001; 2001:PE39.
  • 110
    Mason R, Brooks A. The electrophysiological effects of melatonin and a putative melatonin antagonist (N-acetyltryptamine) on rat suprachiasmatic neurones in vitro. Neurosci Lett 1988; 95:296301.
  • 111
    Shibata S, Cassone VM, Moore RY. Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus in vitro. Neurosci Lett 1989; 97:140144.
  • 112
    Starkey SJ, Walker MP, Beresford IJ et al. Modulation of the rat suprachiasmatic circadian clock by melatonin in vitro. Neuroreport 1995; 6:19471951.
  • 113
    Stehle J, Vanecek J, Vollrath L. Effects of melatonin on spontaneous electrical activity of neurons in rat suprachiasmatic nuclei: an in vitro iontophoretic study. J Neural Transm 1989; 78:173177.
  • 114
    Mason R, Rusak B. Neurophysiological responses to melatonin in the SCN of short-day sensitive and refractory hamsters. Brain Res 1990; 533:1519.
  • 115
    Rusak B, Yu GD. Regulation of melatonin-sensitivity and firing-rate rhythms of hamster suprachiasmatic nucleus neurons: pinealectomy effects. Brain Res 1993; 602:200204.
  • 116
    McArthur AJ, Gillette MU, Prosser RA. Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Res 1991; 565:158161.
  • 117
    Liu C, Weaver DR, Jin X et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 1997; 19:91102.
  • 118
    Dubocovich ML. Pharmacology and function of melatonin receptors. FASEB J 1988; 2:27652773.
  • 119
    Hunt AE, Al-Ghoul WM, Gillette MU et al. Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol 2001; 280:C110C118.
  • 120
    Gerdin MJ, Masana MI, Rivera-Bermudez MA et al. Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin. FASEB J 2004; 18:16461656.
  • 121
    Goto M, Oshima I, Tomita T et al. Melatonin content of the pineal gland in different mouse strains. J Pineal Res 1989; 7:195204.
  • 122
    Jiang ZG, Nelson CS, Allen CN. Melatonin activates an outward current and inhibits Ih in rat suprachiasmatic nucleus neurons. Brain Res 1995; 687:125132.
  • 123
    Van den Top M, Buijs RM, Ruijter JM et al. Melatonin generates an outward potassium current in rat suprachiasmatic nucleus neurones in vitro independent of their circadian rhythm. Neuroscience 2001; 107:99108.
  • 124
    Buijs RM. The anatomical basis for the expression of circadian rhythms: the efferent projections of the suprachiasmatic nucleus. Prog Brain Res 1996; 111:229240.
  • 125
    Chou TC, Bjorkum AA, Gaus SE et al. Afferents to the ventrolateral preoptic nucleus. J Neurosci 2002; 22:977990.
  • 126
    Deurveilher S, Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 2005; 130:165183.
  • 127
    Chou TC, Scammell TE, Gooley JJ et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 2003; 23:1069110702.
  • 128
    Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437:12571263.
  • 129
    Sherin JE, Elmquist JK, Torrealba F et al. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 1998; 18:47054721.
  • 130
    Hermes ML, Coderre EM, Buijs RM et al. GABA and glutamate mediate rapid neurotransmission from suprachiasmatic nucleus to hypothalamic paraventricular nucleus in rat. J Physiol 1996; 496(Pt 3):749757.
  • 131
    Zhang L, Kolaj M, Renaud LP. Suprachiasmatic nucleus communicates with anterior thalamic paraventricular nucleus neurons via rapid glutamatergic and gabaergic neurotransmission: state-dependent response patterns observed in vitro. Neuroscience 2006; 141:20592066.
  • 132
    Sun X, Whitefield S, Rusak B et al. Electrophysiological analysis of suprachiasmatic nucleus projections to the ventrolateral preoptic area in the rat. Eur J Neurosci 2001; 14:12571274.
  • 133
    Strecker GJ, Wuarin JP, Dudek FE. GABAA-mediated local synaptic pathways connect neurons in the rat suprachiasmatic nucleus. J Neurophysiol 1997; 78:22172220.
  • 134
    Liu C, Reppert SM. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 2000; 25:123128.
  • 135
    Buijs RM, Kalsbeek A. Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2001; 2:521526.
  • 136
    Hobson JA, Pace-Schott EF. The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat Rev Neurosci 2002; 3:679693.
  • 137
    Buijs RM, Hou YX, Shinn S et al. Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus. J Comp Neurol 1994; 340:381391.
  • 138
    Kalsbeek A, Drijfhout WJ, Westerink BH et al. GABA receptors in the region of the dorsomedial hypothalamus of rats are implicated in the control of melatonin and corticosterone release. Neuroendocrinology 1996; 63:6978.
  • 139
    Niles L. Melatonin interaction with the benzodiazepine-GABA receptor complex in the CNS. Adv Exp Med Biol 1991; 294:267277.
  • 140
    Golombek DA, Pevet P, Cardinali DP. Melatonin effects on behavior: possible mediation by the central GABAergic system. Neurosci Biobehav Rev 1996; 20:403412.
  • 141
    Honore T, Drejer J. Phenobarbitone enhances [35S]TBPS binding to extensively washed rat cortical membranes. J Pharm Pharmacol 1985; 37:928929.
  • 142
    Squires RF, Casida JE, Richardson M et al. [35S]t-butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol Pharmacol 1983; 23:326336.
  • 143
    Wan Q, Man HY, Liu F et al. Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors. Nat Neurosci 1999; 2:401403.
  • 144
    Wu FS, Yang YC, Tsai JJ. Melatonin potentiates the GABAA receptor-mediated current in cultured chick spinal cord neurons. Neurosci Lett 1999; 260:177180.
  • 145
    Li GL, Li P, Yang XL. Melatonin modulates γ-aminobutyric acidA receptor-mediated currents on isolated carp retinal neurons. Neurosci Lett 2001; 301:4953.
  • 146
    Barnard EA, Skolnick P, Olsen RW et al. International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 1998; 50:291313.
  • 147
    Lowenstein PR, Rosenstein R, Cardinali DP. Melatonin reverses pinealectomy-induced decrease of benzodiazepine binding in rat cerebral cortex. Neurochem Int 1985; 7:675681.
  • 148
    Acuna-Castroviejo D, Lowenstein PR, Rosenstein R et al. Diurnal variations of benzodiazepine binding in rat cerebral cortex: disruption by pinealectomy. J Pineal Res 1986; 3:101109.
  • 149
    Xu F, Li JC, Ma KC et al. Effects of melatonin on hypothalamic gamma-aminobutyric acid, aspartic acid, glutamic acid, beta-endorphin and serotonin levels in male mice. Biol Signals 1995; 4:225231.
  • 150
    Codding PW, Muir AK. Molecular structure of Ro15–1788 and a model for the binding of benzodiazepine receptor ligands. Structural identification of common features in antagonists. Mol Pharmacol 1985; 28:178184.
  • 151
    Davidson AJ, Yamazaki S, Menaker M. SCN: ringmaster of the circadian circus or conductor of the circadian orchestra? Novartis Found Symp 2003; 253:110121.
  • 152
    Mistlberger RE. Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Brain Res Rev 2005; 49:429454.
  • 153
    Golombek DA, Cardinali DP. Melatonin accelerates reentrainment after phase advance of the light-dark cycle in Syrian hamsters: antagonism by flumazenil. Chronobiol Int 1993; 10:435441.
  • 154
    Golombek DA, Escolar E, Cardinali DP. Melatonin-induced depression of locomotor activity in hamsters: time-dependency and inhibition by the central-type benzodiazepine antagonist Ro 15– 1788. Physiol Behav 1991; 49:10911097.
  • 155
    Golombek DA, Escolar E, Burin LJ et al. Time-dependent melatonin analgesia in mice: inhibition by opiate or benzodiazepine antagonism. Eur J Pharmacol 1991; 194:2530.
  • 156
    Pierrefiche G, Zerbib R, Laborit H. Anxiolytic activity of melatonin in mice: involvement of benzodiazepine receptors. Res Commun Chem Pathol Pharmacol 1993; 82:131142.
  • 157
    Golombek DA, Martini M, Cardinali DP. Melatonin as an anxiolytic in rats: time dependence and interaction with the central GABAergic system. Eur J Pharmacol 1993; 237:231236.
  • 158
    Cardinali DP, Golombek DA. The rhythmic GABAergic system. Neurochem Res 1998; 23:607614.
  • 159
    Kalsbeek A, Cutrera RA, Van Heerikhuize JJ et al. GABA release from suprachiasmatic nucleus terminals is necessary for the light-induced inhibition of nocturnal melatonin release in the rat. Neuroscience 1999; 91:453461.
  • 160
    Tung A, Bergmann BM, Herrera S et al. Recovery from sleep deprivation occurs during propofol anesthesia. Anesthesiology 2004; 100:14191426.