• 1
    Lerner AB, Case JD, Takahashi Y. Isolation of melatonin, a pineal factor that lightens melanocytes. J Am Chem Soc 1958; 80:2587.
  • 2
    Marczynski TJ, Yamaguchi N, Ling GM, Grodzinska L. Sleep induced by the administration of melatonin (5-methoxyn-acetyltryptamine) to the hypothalamus in unrestrained cats. Experientia 1964; 20:435437.
  • 3
    Reiter RJ. Melatonin: the chemical expression of darkness. Mol Cell Endocrinol 1991; 79:C153C158.
  • 4
    Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 1991; 12:151180.
  • 5
    Reiter RJ. The melatonin rhythm: both a clock and a calendar. Experientia 1993; 49:654664.
  • 6
    Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ. Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J 1993; 1:5760.
  • 7
    Tan DX, Reiter RJ, Manchester LC et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2:181197.
  • 8
    Mishima K, Tozawa T, Satoh K, Matsumoto Y, Hishikawa Y, Okawa M. Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer's type with disturbed sleep-waking. Biol Psychiatry 1999; 45:417421.
  • 9
    Liu RY, Zhou JN, Van Heerikhuize J, Hofman MA, Swaab DF. Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer's disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab 1999; 84:323327.
  • 10
    Sakotnik A, Liebmann PM, Stoschitzky K et al. Decreased melatonin synthesis in patients with coronary artery disease. Eur Heart J 1999; 20:13141317.
  • 11
    Altun A, Yaprak M, Aktoz M, Vardar A, Betul UA, Ozbay G. Impaired nocturnal synthesis of melatonin in patients with cardiac syndrome X. Neurosci Lett 2002; 327:143145.
  • 12
    Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia MJ, Sanchez J, Marrero F, De Armas-Trujillo D. Decreased nocturnal melatonin levels during acute myocardial infarction. J Pineal Res 2002; 33:248252.
  • 13
    Yaprak M, Altun A, Vardar A, Aktoz M, Ciftci S, Ozbay G. Decreased nocturnal synthesis of melatonin in patients with coronary artery disease. Int J Cardiol 2003; 89:103107.
  • 14
    Hardeland R, Reiter RJ, Poeggeler B, Tan DX. The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 1993; 17:347357.
  • 15
    Vollrath L, Huesgen A. Response of pineal serotonin N-acetyltransferase activity in male guinea pigs exposed to light pulses at night. J Neural Transm 1988; 72:5566.
  • 16
    Foulkes NS, Whitmore D, Sassone-Corsi P. Rhythmic transcription: the molecular basis of circadian melatonin synthesis. Biol Cell 1997; 89:487494.
  • 17
    Karolczak M, Korf HW, Stehle JH. The rhythm and blues of gene expression in the rodent pineal gland. Endocrine 2005; 27:89100.
  • 18
    Ribelayga C, Pevet P, Simonneaux V. HIOMT drives the photoperiodic changes in the amplitude of the melatonin peak of the Siberian hamster. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1339R1345.
  • 19
    Ceinos RM, Chansard M, Revel F, Calgari C, Miguez JM, Simonneaux V. Analysis of adrenergic regulation of melatonin synthesis in Siberian hamster pineal emphasizes the role of HIOMT. Neurosignals 2004; 13:308317.
  • 20
    Johnston JD, Bashforth R, Diack A, Andersson H, Lincoln GA, Hazlerigg DG. Rhythmic melatonin secretion does not correlate with the expression of arylalkylamine N-acetyltransferase, inducible cyclic AMP early repressor, period1 or cryptochrome1 mRNA in the sheep pineal. Neuroscience 2004; 124:789795.
  • 21
    Liu T, Borjigin J. N-acetyltransferase is not the rate-limiting enzyme of melatonin synthesis at night. J Pineal Res 2005; 39:9196.
  • 22
    Hardeland R., Poeggeler B. Non-vertebrate melatonin. J Pineal Res 2003; 34:233241.
  • 23
    Iuvone PM, Besharse JC. Regulation of indoleamine N-acetyltransferase activity in the retina: effects of light and dark, protein synthesis inhibitors and cyclic nucleotide analogs. Brain Res 1983; 273:111119.
  • 24
    Martin XD, Malina HZ, Brennan MC, Hendrickson PH, Lichter PR. The ciliary body – the third organ found to synthesize indoleamines in humans. Eur J Ophthalmol 1992; 2:6772.
  • 25
    Abe M, Itoh MT, Miyata M, Ishikawa S, Sumi Y. Detection of melatonin, its precursors and related enzyme activities in rabbit lens. Exp Eye Res 1999; 68:255262.
  • 26
    Menendez-Pelaez A, Howes KA, Gonzalez-Brito A, Reiter RJ. N-acetyltransferase activity, hydroxyindole-O-methyltransferase activity, and melatonin levels in the Harderian glands of the female Syrian hamster: changes during the light:dark cycle and the effect of 6-parachlorophenylalanine administration. Biochem Biophys Res Commun 1987; 145:12311238.
  • 27
    Stefulj J, Hortner M, Ghosh M et al. Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. J Pineal Res 2001; 30:243247.
  • 28
    Jimenez-Jorge S, Jimenez-Caliani AJ, Guerrero JM et al. Melatonin synthesis and melatonin-membrane receptor (MT1) expression during rat thymus development: role of the pineal gland. J Pineal Res 2005; 39:7783.
  • 29
    Kvetnoy IM. Extrapineal melatonin: location and role within diffuse neuroendocrine system. Histochem J 1999; 31:112.
  • 30
    Tan DX, Manchester LC, Reiter RJ et al. Identification of highly elevated levels of melatonin in bone marrow: its origin and significance. Biochim Biophys Acta 1999; 1472:206214.
  • 31
    Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni JM. Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res 2000; 28:193202.
  • 32
    Huether G, Poeggeler B, Reimer A, George A. Effect of tryptophan administration on circulating melatonin levels in chicks and rats: evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract. Life Sci 1992; 51:945953.
  • 33
    Huether G. The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia 1993; 49:665670.
  • 34
    Itoh MT, Ishizuka B, Kuribayashi Y, Amemiya A, Sumi Y. Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Mol Hum Reprod 1999; 5:402408.
  • 35
    Tijmes M, Pedraza R, Valladares L. Melatonin in the rat testis: evidence for local synthesis. Steroids 1996; 61:6568.
  • 36
    Iwasaki S, Nakazawa K, Sakai J et al. Melatonin as a local regulator of human placental function. J Pineal Res 2005; 39:261265.
  • 37
    Carrillo-Vico A, Calvo JR, Abreu P et al. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J 2004; 18:537539.
  • 38
    Fischer TW, Sweatman TW, Semak I, Sayre RM, Wortsman J, Slominski A. Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J 2006; 20:15641566.
  • 39
    Tan DX, Manchester LC, Reiter RJ, Qi W, Hanes MA, Farley NJ. High physiological levels of melatonin in the bile of mammals. Life Sci 1999; 65:25232529.
  • 40
    Skinner DC, Malpaux B. High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology 1999; 140:43994405.
  • 41
    Tricoire H, Locatelli A, Chemineau P, Malpaux B. Melatonin enters the cerebrospinal fluid through the pineal recess. Endocrinology 2002; 143:8490.
  • 42
    Watt FM, Jordan PW, O'Neill CH. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc Natl Acad Sci U S A 1988; 85:55765580.
  • 43
    Savini I, Duflot S, Avigliano L. Dehydroascorbic acid uptake in a human keratinocyte cell line (HaCaT) is glutathione-independent. Biochem J 2000; 345:665672.
  • 44
    Chen G, Huo Y, Tan DX, Liang Z, Zhang W, Zhang Y. Melatonin in Chinese medicinal herbs. Life Sci 2003; 73:1926.
  • 45
    Vakkuri O, Rintamaki H, Leppaluoto J. Plasma and tissue concentrations of melatonin after midnight light exposure and pinealectomy in the pigeon. J Endocrinol 1985; 105:263268.
  • 46
    Vaughan GM, Reiter RJ. Pineal dependence of the Syrian hamster's nocturnal serum melatonin surge. J Pineal Res 1986; 3:914.
  • 47
    Tan DX, Manchester LC, Hardeland R et al. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res 2003; 34:7578.
  • 48
    Lahiri DK, Davis D, Nurnberger JI, Jr. Detection of specific protein bands with melatonin-like immunoreactivity in different cell lines and human brain regions. IUBMB Life 1999; 48:127132.
  • 49
    Stokkan KA, Reiter RJ, Nonaka KO, Lerchl A, Yu BP, Vaughan MK. Food restriction retards aging of the pineal gland. Brain Res 1991; 545:6672.
  • 50
    Mattison JA, Lane MA, Roth GS, Ingram DK. Calorie restriction in rhesus monkeys. Exp Gerontol 2003; 38:3546.
  • 51
    Roth GS, Handy AM, Mattison JA, Tilmont EM, Ingram DK, Lane MA. Effects of dietary caloric restriction and aging on thyroidhormones of rhesus monkeys. Horm Metab Res 2002; 34:378382.
  • 52
    Fuhrberg B, Hardeland R, Poeggeler B, Behrmann G. Dramatic rises of melatonin and 5-methoxytryptamine in Gonyaulax exposed to decreased temperature. Biol Rhythm Res 1997; 28:144150.
  • 53
    Tan DX, Manchester LC, Reiter RJ, Qi W, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 2000; 9:137159.
  • 54
    Lee PP, Allen AE, Pang SF. Cold stress during scotophase elicited differential response in quail pineal, retinal, and serum melatonin levels. Acta Endocrinol 1990; 122:535539.
  • 55
    Wu WT, Chen YC, Reiter RJ. Day-night differences in the responses of the pineal gland to swimming stress. Proc Soc Exp Biol Med 1988; 187:315319.
  • 56
    Carr DB, Reppert SM, Bullen B et al. Plasma melatonin increases during exercise in women. J Clin Endocrinol Metab 1981; 53:224225.
  • 57
    Bullen BA, Skrinar GS, McArthur JW, Carr DB. Exercise effect upon plasma melatonin levels in women: possible physiological significance. Can J Appl Sport Sci 1982; 7:9097.
  • 58
    Jaworek J, Leja-Szpak A, Bonior J et al. Protective effect of melatonin and its precursor L-tryptophan on acute pancreatitis induced by caerulein overstimulation or ischemia/reperfusion. J Pineal Res 2003; 34:4052.
  • 59
    Afreen F, Zobayed SM, Kozai T. Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. J Pineal Res 2006; 41:108115.
  • 60
    Rodriguez JR, Mazuruk K, Schoen TJ, Chader GJ. Structural analysis of the human hydroxyindole-O-methyltransferase gene. Presence of two distinct promoters. J Biol Chem 1994; 269:31693177.
  • 61
    Estrada-Rodgers L, Levy GN, Weber WW. Characterization of a hormone response element in the mouse N-acetyltransferase 2 (NAT2*) promoter. Gene Exp 1998; 7:1324.
  • 62
    Scortegana M, Galdzicki Z, Rapoport SI, Hanbaver J. Activator protein 1 DNA binding activation by hydrogen peroxide in neuronal and astrocytic primary cultures of trisomy-16 and diploid mice. Brain Res Mol Brain Res 1999; 73:144150.
  • 63
    Seematter G, Binnert C, Martin JL, Tappy L. Relationship between stress, inflammation and metabolism. Curr Opin Clin Nutr Metab Care 2004; 7:169173.
  • 64
    Otsuka M, Kato K, Murai I, Asai S, Iwasaki A, Arekawa Y. Role of nocturnal melatonin and the pineal gland in modulation of water-immersion restraint stress-induced gastric mucosal lesions in rats. J Pineal Res 2001; 30:8286.
  • 65
    Tan DX, Manchester LC, Reiter RJ, Qi W, Kim SJ, El-Sokkary GH. Ischemia/reperfusion-induced arrhythmias in the isolated rat heart: prevention by melatonin. J Pineal Res 1998; 25:184191.
  • 66
    Sahna E, Olmez E, Acet A. Effects of physiological and pharmacological concentrations of melatonin on ischemia-reperfusion arrhythmias in rats: can the incidence of sudden cardiac death be reduced? J Pineal Res 2002; 32:194198.
  • 67
    Sahna E, Parlakpinar H, Turkoz Y, Acet A. Protective effects of melatonin on myocardial ischemia/reperfusion induced infarct size and oxidative changes. Physiol Res 2005; 54:491495.
  • 68
    Wu WT, Reiter RJ, Troiani ME, Vaughan GM. Elevated daytime rat pineal and serum melatonin levels induced by isoproterenol are depressed by swimming. Life Sci 1987; 41:14731479.
  • 69
    Wu WT, Chen YC, Sabry I, Reiter RJ. Evidence that the deep pineal gland of the rat responds to isoperoterenol and to swimming stress. Neuroendocrinol Lett 1988; 10:1925.
  • 70
    Ueck M, Troiani ME, Reiter RJ. Transient reduction in pineal melatonin levels but not N-acetyltransferase activity in rats forced to swim for 15 minutes at night. Neuroendocrinol Lett 1988; 10:8189.
  • 71
    Troiani ME, Reiter RJ, Vaughan MK, Oaknin S, Vaughan GM. Swimming depresses nighttime melatonin content without changing N-acetyltransferase activity in the rat pineal gland. Neuroendocrinology 1988; 47:5560.
  • 72
    Troiani ME, Reiter RJ, Tannenbaum MG, Puig-Domingo M, Guerrero JM, Menendez-Pelaez A. Neither the pituitary gland nor the sympathetic nervous system is responsible for eliciting the large drop in elevated rat pineal melatonin levels due to swimming. J Neural Transm 1988; 74:149160.
  • 73
    Pohjanvirta R, Tuomisto J, Linden J, Laitinen J. TCDD reduces serum melatonin levels in Long-Evans rats. Pharmacol Toxicol 1989; 65:239240.
  • 74
    Linden J, Pohjanvirta R, Rahko T, Tuomisto J. TCDD decreases rapidly and persistently serum melatonin concentration without morphologically affecting the pineal gland in TCDD-resistant Han/Wistar rats. Pharmacol Toxicol 1991; 69:427432.
  • 75
    Pohjanvirta R, Laitinen J, Vakkuri O et al. Mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reduces circulating melatonin levels in the rat. Toxicology 1996; 107:8597.
  • 76
    Slezak BP, Hamm JT, Reyna J, Hurst CH, Birnbaum LS. TCDD-mediated oxidative stress in male rat pups following perinatal exposure. J Biochem Mol Toxicol 2002; 16:4952.
  • 77
    Knerr S, Schaefer J, Both S, Mally A, Dekant W, Schrenk D. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induced cytochrome P450s alter the formation of reactive oxygen species in liver cells. Mol Nutr Food Res 2006; 50:378384.
  • 78
    Tan DX, Manchester LC, Reiter RJ et al. A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun 1998; 253:614620.
  • 79
    Ma X, Idle JR, Krausz KW, Gonzalez FJ. Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos 2005; 33:489494.
  • 80
    Lahiri DK, Ge YW, Sharman EH, Bondy SC. Age-related changes in serum melatonin in mice: higher levels of combined melatonin and 6-hydroxymelatonin sulfate in the cerebral cortex than serum, heart, liver and kidney tissues. J Pineal Res 2004; 36:217223.
  • 81
    Aust S, Jaeger W, Klimpfinger M et al. Biotransformation of melatonin in human breast cancer cell lines: role of sulfotransferase 1A1. J Pineal Res 2005; 39:276282.
  • 82
    Zhang H, Squadrito GL, Pryor WA. The reaction of melatonin with peroxynitrite: formation of melatonin radical cation and absence of stable nitrated products. Biochem Biophys Res Commun 1998; 251:8387.
  • 83
    Zhang H, Squadrito GL, Uppu R, Pryor WA. Reaction of peroxynitrite with melatonin: a mechanistic study. Chem Res Toxicol 1999; 12:526534.
  • 84
    Horstman JA, Wrona MZ, Dryhurst G. Further insights into the reaction of melatonin with hydroxyl radical. Bioorg Chem 2002; 30:371382.
  • 85
    Dellegar SM, Murphy SA, Bourne AE, DiCesare JC, Purser GH. Identification of the factors affecting the rate of deactivation of hypochlorous acid by melatonin. Biochem Biophys Res Commun 1999; 257:431439.
  • 86
    Agozzino P, Avellone G, Bongiorno D et al. Melatonin: structural characterization of its non-enzymatic mono-oxygenate metabolite. J Pineal Res 2003; 35:269275.
  • 87
    Semak I, Naumova M, Korik E, Terekhovich V, Wortsman J, Slominski A. A novel metabolic pathway of melatonin: oxidation by cytochrome C. Biochemistry 2005; 44:93009307.
  • 88
    Ma X, Idle JR, Krausz KW, Tan DX, Ceraulo L, Gonzalez FJ. Urinary metabolites and antioxidant products of exogenous melatonin in the mouse. J Pineal Res 2006; 40:343349.
  • 89
    Peyrot F, Martin MT, Migault J, Ducrocq C. Reactivity of peroxynitrite with melatonin as a function of pH and CO2 content. Eur J Org Chem 2002; 321:110.
  • 90
    Tesoriere L, Avellone G, Ceraulo L, D'Arpa D, Allegra M, Livrea MA. Oxidation of melatonin by oxoferryl hemoglobin: a mechanistic study. Free Radic Res 2001; 35:633642.
  • 91
    Tan DX, Hardeland R, Manchester LC et al. Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J Pineal Res 2003; 34:249259.
  • 92
    Siwicka A, Reiter RJ, Tan X et al. The synthesis and the structure elucidation of N, O-diacetyl derivative of cyclic 3-hydroxymelatonin. Central Eur J Chem 2004; 2:425433.
  • 93
    Hirata F, Hayaishi O, Tokuyama T, Seno S. In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem 1974; 249:13111313.
  • 94
    Tan DX, Manchester LC, Reiter RJ et al. Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radic Biol Med 2000; 29:11771185.
  • 95
    Ximenes VF, Catalani LH, Campa A. Oxidation of melatonin and tryptophan by an HRP cycle involving compound III. Biochem Biophys Res Commun 2001; 287:130134.
  • 96
    Silva SO, Ximenes VF, Catalani LH, Campa A. Myeloperoxidase-catalyzed oxidation of melatonin by activated neutrophils. Biochem Biophys Res Commun 2000; 279:657662.
  • 97
    Hardeland R, Pandi-Perumal SR, Cardinali DP. Melatonin. Int J Biochem Cell Biol 2006; 38:313316.
  • 98
    Hardeland R, Balzer I, Poeggeler B et al. On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a unicell, photooxidation, and scavenging of free radicals. J Pineal Res 1995; 18:104111.
  • 99
    De Almeida EA, Martinez GR, Klitzke CF, De Medeiros MH, Di Mascio P. Oxidation of melatonin by singlet molecular oxygen (O2(1Δg)) produces N1-acetyl-N2-formyl-5-methoxykynurenine. J Pineal Res 2003; 35:131137.
  • 100
    Hardeland R, Poeggeler B, Niebergall R, Zelosko V. Oxidation of melatonin by carbonate radicals and chemiluminescence emitted during pyrrole ring cleavage. J Pineal Res 2003; 34:1725.
  • 101
    Rodrigues MR, Rodriguez D, Henrique Catalani L, Russo M, Campa A. Interferon-gamma independent oxidation of melatonin by macrophages. J Pineal Res 2003; 34:6974.
  • 102
    Silva SO, Rodrigues MR, Carvalho SR, Catalani LH, Campa A, Ximenes VF. Oxidation of melatonin and its catabolites, N1-acetyl-N2 -formyl-5-methoxykynuramine and N1-acetyl-5-methoxykynuramine, by activated leukocytes. J Pineal Res 2004; 37:171175.
  • 103
    Silva SO, Carvalho SR, Ximenes VF, Okada SS, Campa A. Melatonin and its kynurenin-like oxidation products affect the microbicidal activity of neutrophils. Microbes Infect 2006; 8:420425.
  • 104
    Poeggeler B, Hardeland R. Observations on melatonin oxidation and metabolite release by unicellular organisms and small aquatic metazoans. In: Actions and Redox Properties of Melatonin and other Aromatic Amino Acid Metabolites. HardelandR, ed. Cuviller Verlag, Gottingen, 2001; pp. 6669.
  • 105
    Rozov SV, Filatova EV, Orlov AA et al. N1-acetyl-N2-formyl-5 methoxykynuramine is a product of melatonin oxidation in rats. J Pineal Res 2003; 35:245250.
  • 106
    Harthe C, Claudy D, Dechaud H, Vivien-Roels B, Pevet P, Claustrat B. Radioimmunoassay of N-acetyl-N-formyl-5-methoxykynuramine (AFMK): a melatonin oxidative metabolite. Life Sci 2003; 73:15871597.
  • 107
    Silva SO, Ximenes VF, Livramento JA, Catalani LH, Campa A. High concentrations of the melatonin metabolite, N1-acetyl-N2-formyl-5-methoxykynuramine, in cerebrospinal fluid of patients with meningitis: a possible immunomodulatory mechanism. J Pineal Res 2005; 39:302306.
  • 108
    Rosen J, Than NN, Koch D, Poeggeler B, Laatsch H, Hardeland R. Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J Pineal Res 2006; 41:374381.
  • 109
    Than NN, Heer C, Laatsch H, Hardeland R. Reactions of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK) with the ABTS cation radical: identification of new oxidation products. Redox Rep 2006; 11:1524.
  • 110
    Guenther AL, Schmidt SI, Laatsch H et al. Reactions of the melatonin metabolite AMK (N1-acetyl-5-methoxykynuramine) with reactive nitrogen species: formation of novel compounds, 3-acetamidomethyl-6-methoxycinnolinone and 3-nitro-AMK. J Pineal Res 2005; 39:251260.
  • 111
    Blanchard B, Pompon D, Ducrocq C. Nitrosation of melatonin by nitric oxide and peroxynitrite. J Pineal Res 2000; 29:184192.
  • 112
    Peyrot F, Fernandez BO, Bryan NS, Feelisch M, Ducrocq C. N-Nitroso products from the reaction of indoles with Angeli's salt. Chem Res Toxicol 2006; 19:5867.
  • 113
    Peyrot F, Houee-Levin C, Ducrocq C. Melatonin nitrosation promoted by NOinline image; comparison with the peroxynitrite reaction. Free Radic Res 2006; 40:910920.
  • 114
    Budu A, Peres R, Bueno VB, Catalani LH, Da Silva Garcia CR. N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) modulates the cell cycle of malaria parasites. J Pineal Res 2007; in press.
  • 115
    Bonn D. Melatonin’ multifarious marvel: miracle or myth? Lancet 1996; 347:184.
  • 116
    Fourtillan JB, Brisson AM, Gobin P, Ingrand I, Decourt JP, Girault J. Bioavailability of melatonin in humans after day-time administration of D(7) melatonin. Biopharm Drug Dispos 2000; 21:1522.
  • 117
    Messner M, Huether G, Lorf T, Ramadori G, Schworer H. Presence of melatonin in the human hepatobiliary-gastrointestinal tract. Life Sci 2001; 69:543551.
  • 118
    Waldhauser F, Waldhauser M, Lieberman HR, Deng MH, Lynch HJ, Wurtman RJ. Bioavailability of oral melatonin in humans. Neuroendocrinology 1984; 39:307313.
  • 119
    Di WL, Kadva A, Johnston A, Silman R. Variable bioavailability of oral melatonin. N Engl J Med 1997; 336:10281029.
  • 120
    DeMuro RL, Nafziger AN, Blask DE, Menhinick AM, Bertino JS, Jr. The absolute bioavailability of oral melatonin. J Clin Pharmacol 2000; 40:781784.
  • 121
    Lane EA, Moss HB. Pharmacokinetics of melatonin in man: first pass hepatic metabolism. J Clin Endocrinol Metab 1985; 61:12141216.
  • 122
    Hartter S, Grozinger M, Weigmann H, Roschke J, Hiemke C. Increased bioavailability of oral melatonin after fluvoxamine coadministration. Clin Pharmacol Ther 2000; 67:16.
  • 123
    Hatter S, Nordmark A, Rose DM, Bertilsson L, Tybring G, Laine K. Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity. Br J Clin Pharmacol 2003; 56:679682.
  • 124
    Manchester LC, Poeggeler B, Alvares FL, Ogden GB, Reiter RJ. Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system. Cell Mol Biol Res 1995; 41:391395.
  • 125
    Poeggeler B, Balzer I, Hardeland R, Lerchl A. Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften 1991; 78:268269.
  • 126
    Sprenger J, Hardeland R, Fuhrberg B, Han SZ. Melatonin and other 5-methoxylated indoles in yeast: presence in high concentrations and dependence on tryptophan availability. Cytologia 1999; 64:209213.
  • 127
    Reiter RJ. Melatonin, active oxygen species and neurological damage. Drug News Perspect 1998; 11:291296.
  • 128
    Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 2000; 9:137159.
  • 129
    Hardeland R, Pandi-Perumal SR. Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab (Lond) 2005; 2:115.
  • 130
    Hardeland R, Coto-Montes A, Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int 2003; 20:921962.
  • 131
    Hara M, Iigo M, Ohtani-Kaneko R et al. Administration of melatonin and related indoles prevents exercise-induced cellular oxidative changes in rats. Biol Signals 1997; 6:90100.
  • 132
    Qi W, Reiter RJ, Tan DX, Manchester LC, Siu AW, Garcia JJ. Increased levels of oxidatively damaged DNA induced by chromium(III) and H2O2: protection by melatonin and related molecules. J Pineal Res 2000; 29:5461.
  • 133
    Lopez-Burillo S, Tan DX, Rodriguez-Gallego V et al. Melatonin and its derivatives cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine and 6-hydroxymelatonin reduce oxidative DNA damage induced by Fenton reagents. J Pineal Res 2003; 34:178184.
  • 134
    Hara M, Yoshida M, Nishijima H et al. Melatonin, a pineal secretory product with antioxidant properties, protects against cisplatin-induced nephrotoxicity in rats. J Pineal Res 2001; 30:129138.
  • 135
    Maharaj DS, Walker RB, Glass BD, Daya S. 6-Hydroxymelatonin protects against cyanide induced oxidative stress in rat brain homogenates. J Chem Neuroanat 2003; 26:103107.
  • 136
    Maharaj DS, Maharaj H, Antunes EM et al. 6-Hydroxymelatonin protects against quinolinic-acid-induced oxidative neurotoxicity in the rat hippocampus. J Pharm Pharmacol 2005; 57:877881.
  • 137
    Maharaj DS, Maharaj H, Daya S, Glass BD. Melatonin and 6-hydroxymelatonin protect against iron-induced neurotoxicity. J Neurochem 2006; 96:7881.
  • 138
    Calvo JR, Reiter RJ, Garcia JJ, Ortiz GG, Tan DX, Karbownik M. Characterization of the protective effects of melatonin and related indoles against alpha-naphthylisothiocyanate-induced liver injury in rats. J Cell Biochem 2001; 80:461470.
  • 139
    Matuszak Z, Bilska MA, Reszka KJ, Chignell CF, Bilski P. Interaction of singlet molecular oxygen with melatonin and related indoles. Photochem Photobiol 2003; 78:449455.
  • 140
    Maharaj DS, Limson JL, Daya S. Hydroxymelatonin converts Fe(III) to Fe(II) and reduces iron-induced lipid peroxidation. Life Sci 2003; 72:13671375.
  • 141
    Liu X, Chen Z, Chua CC et al. Melatonin as an effective protector against doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 2002; 283:H254H263.
  • 142
    Duan Q, Wang Z, Lu T, Chen J, Wang X. Comparison of 6-hydroxylmelatonin or melatonin in protecting neurons against ischemia/reperfusion-mediated injury. J Pineal Res 2006; 41:351357.
  • 143
    Sakano K, Oikawa S, Hiraku Y, Kawanishi S. Oxidative DNA damage induced by a melatonin metabolite, 6-hydroxymelatonin, via a unique non-o-quinone type of redox cycle. Biochem Pharmacol 2004; 68:18691878.
  • 144
    Tan DX, Manchester LC, Burkhardt S et al. N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J 2001; 15:22942296.
  • 145
    Maharaj DS, Anoopkumar-Dukie S, Glass BD et al. The identification of the UV degradants of melatonin and their ability to scavenge free radicals. J Pineal Res 2002; 32:257261.
  • 146
    Burkhardt S, Reiter RJ, Tan DX, Hardeland R, Cabrera J, Karbownik M. DNA oxidatively damaged by chromium(III) and H2O2 is protected by the antioxidants melatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, resveratrol and uric acid. Int J Biochem Cell Biol 2001; 33:775783.
  • 147
    Onuki J, Almeida EA, Medeiros MH, Di Mascio P. Inhibition of 5-aminolevulinic acid-induced DNA damage by melatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, quercetin or resveratrol. J Pineal Res 2005; 38:107115.
  • 148
    Ressmeyer AR, Mayo JC, Zelosko V et al. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep 2003; 8:205213.
  • 149
    Entrena A, Camacho ME, Carrion MD et al. Kynurenamines as neural nitric oxide synthase inhibitors. J Med Chem 2005; 48:81748181.
  • 150
    Leon J, Escames G, Rodriguez MI et al. Inhibition of neuronal nitric oxide synthase activity by N1-acetyl-5-methoxykynuramine, a brain metabolite of melatonin. J Neurochem 2006; 98:20232033.
  • 151
    Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 2005; 27:119130.
  • 152
    Acuna-Castroviejo D, Escames G, Leon J, Carazo A, Khaldy H. Mitochondrial regulation by melatonin and its metabolites. Adv Exp Med Biol 2003; 527:549557.
  • 153
    Kelly RW, Amato F, Seamark RF. N-acetyl-5-methoxy kynurenamine, a brain metabolite of melatonin, is a potent inhibitor of prostaglandin biosynthesis. Biochem Biophys Res Commun 1984; 121:372379.
  • 154
    Silva SO, Rodrigues MR, Ximenes VF, Bueno-da-Silva AE, Amarante-Mendes GP, Campa A. Neutrophils as a specific target for melatonin and kynuramines: effects on cytokine release. J Neuroimmunol 2004; 156:146152.
  • 155
    Mayo JC, Sainz RM, Tan DX et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol 2005; 165:139149.