• 1
    Bartness TJ, Demas GE, Song CK. Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system. Exp Biol Med 2002; 227:363376.
  • 2
    Nelson RJ, Demas GE. Seasonal changes in immune function. Q Rev Biol 1996; 71:511548.
  • 3
    Dawson A, King VM, Bentley GE et al. Photoperiodic control of seasonality in birds. J Biol Rhythms 2001; 16:365380.
  • 4
    Brigham MR, Barclay RMR. Lunar influence on foraging and nesting activity of common poorwills (Phalaenoptilus nuttallii). Auk 1992; 109:315320.
  • 5
    Brigham MR, Gutsell RCA, Geiser F et al. Foraging behavior in relation to the lunar cycle by Australian owlet-nightjars Aegotheles cristatus. Emu 1999; 99:253261.
  • 6
    Kotler BP. Risk of predation and the structure of desert rodent communities. Ecology 1984; 65:689701.
  • 7
    Gannon MR, Willig MR. The effect of lunar illumination on movement and activity of the red fig-eating bat (Stenoderma rufum). Biotropica 1997; 29:525529.
  • 8
    Horning H, Trillmich F. Lunar cycles in diel prey migrations exert a stronger effect on the diving of juveniles than adult Galapagos fur seals. Proc R Soc Lond B 1999; 266:11271132.
  • 9
    Guchhait P, Haldar C. Circadian rhythms of melatonin and sex steroids in a nocturnal bird, Indian spotted owlet Athene brama during reproductively active and inactive phases. Biol Rhythm Res 1999; 30:508516.
  • 10
    Lamba VJ, Goswami SV, Sundararaj BI. Circannual and circadian variations in plasma levels of steroids (cortisol, estradiol-17beta, estrone, and testosterone) correlated with the annual gonadal cycle in the catfish, Heteropneustes fossilis (Bloch). Gen Comp Endocrinol 1983; 50:205225.
  • 11
    Plymate SR, Tenover JS, Bremner WJ. Circadian variation in testosterone, sex hormone-binding globulin, and calculated non-sex hormone-binding globulin bound testosterone in healthy young and elderly men. J Androl 1989; 10:366371.
  • 12
    Atkinson HC, Waddell BJ. Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology 1997; 138:38423848.
  • 13
    Wada M. Circadian rhythms of testosterone-dependent behaviors, crowing and locomotor activity, in male Japanese quail. J Comp Physiol A 2004; 158:1725.
  • 14
    Dinneen S, Alzaid A, Miles J et al. Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. J Clin Inves 1993; 92:22932290.
  • 15
    Albers S, Duriscoe D. Modeling light pollution from population data and implications for National Park Service lands. George Wright Forum 2001; 18:5668.
  • 16
    Cinzano P, Falchi F, Elvidge C. The first world atlas of the artificial night sky brightness. Mon Not R Astron Soc 2001; 328:689707.
  • 17
    Pauley SM. Lighting for the human circadian clock: recent research indicates lighting has become a public health issue. Med Hypotheses 2004; 63:588596.
  • 18
    Thapan K, Arendt J, Skene DJ. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor in humans. J Physiol 2001; 535:261267.
  • 19
    Shields M. Shift work and health. Health Rep 2002; 13:1133.
  • 20
    Rajaratnam S, Arendt J. Health in a 24-h society. Lancet 2001; 358:9991005.
  • 21
    Lehman MN, Silver R, Gladstone WR et al. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 1987; 7:16261638.
  • 22
    Moore RY, Eichler BV. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 1972; 438:374378.
  • 23
    Shibata S, Moore RY. Electrical and metabolic activity of the suprachiasmatic nucleus neurons in hamster hypothalamic slices. Brain Res 1988; 438:374378.
  • 24
    Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activities are eliminated by hypothalamic lesions. PNAS 1972; 69:15831586.
  • 25
    Provencio I, Cooper HM, Foster RG. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol 1998; 395:417439.
  • 26
    Nelson RJ, Drazen DL. Melatonin mediates seasonal adjustments in immune function. Reprod Nutr Dev 1999; 39:383398.
  • 27
    Prendergast BJ, Nelson RJ, Zucker I Mammalian seasonal rhythms: behavior and neuroendocrine substrates. In: Hormones Brain and Behavior. PfaffDW, ed. Elsevier Science, San Diego, CA, 2002; pp. 93156.
  • 28
    Baydaş G, Erçel E, Canatan H et al. Effect of melatonin on oxidative status of rat brain, liver, and kidney tissues under constant light exposure. Cell Biochem Funct 2001; 19:3741.
  • 29
    Falcon J, Marmillon JB, Claustrat B et al. Regulation of melatonin secretion in a photoreceptive pineal organ: an in vitro study in the pike. J Neurosci 1989; 9:19431950.
  • 30
    Yamada H, Oshima I, Sato K et al. Loss of the circadian rhythms of locomotor activity, food intake, and plasma melatonin concentration induced by constant bright light in the pigeon (Columba livia). J Comp Physiol A 1988; 163:459463.
  • 31
    Zeitzer JM, Dijk D, Kronauer RE et al. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol 2000; 526:695702.
  • 32
    Vaticon MD, Fernandez-Galez C, Esquifino A et al. Effects of constant light on prolactin secretion in adult female rats. Horm Res 1980; 12:277288.
  • 33
    Leproult R, Colecchia EF, L’hermite-Balé R et al. Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. J Clin Endocrinol Metab 2001; 86:151157.
  • 34
    Scheving LE, Pauly JE. Effect of light on corticosterone levels in plasma of rats. Am J Physiol 1966; 210:11121117.
  • 35
    Fischman AJ, Kastin AJ, Graf MV et al. Constant light and dark affect the circadian rhythm of the hypothalamic-pituitary-adrenal axis. Neuroendocrinology 1988; 47:309316.
  • 36
    Snyder SH, Zweig M, Axelrod J et al. Control of the circadian rhythm of serotonin content in the rat pineal gland. PNAS 1965; 53:301305.
  • 37
    Schernhammer ES, Kroenke CH, Dowsett M et al. Urinary 6-sulfatoxymelatonin levels and their correlation with lifestyle factors and steroid hormone levels. J Pineal Res 2006; 40:116124.
  • 38
    Schulmeister K, Weber M, Bogner W et al. Application of melatonin action spectra on practical lighting issues. In: Final Report. The Fifth International LRO Lighting Research Symposium, Light and Human Health, November 3-5, 2002. Report No. 1009370. Palo Alto, CA: The Electric Power Research Institute, 2004; pp. 103114.
  • 39
    Mustonen AM, Nieminen P, Hyvarinen H. Effects of continuous light and melatonin treatment on energy metabolism of the rat. J Endocr Invest 2002; 25:716723.
  • 40
    Robbins K, Adekunmisi AA, Shirley HV. The effect of light regime on growth and pattern of fat accretion of broiler chickens. Growth 1984; 48:269277.
  • 41
    Rodriguez MI, Carretero M, Escames G et al. Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice. Free Radic Res 2007; 41:1524.
  • 42
    Haus E, Smolensky M. Biological clocks and shift work: circadian dysregulation and potential long-term effects. Cancer Causes Control 2006; 17:489500.
  • 43
    Bass J, Turek FW. Sleepless in America: a pathway to obesity and the metabolic syndrome? Arch Intern Med 2005; 165:1516.
  • 44
    Brugger P, Marktl W, Herold M. Impaired nocturnal secretion of melatonin in coronary heart disease. Lancet 1995; 345:1408.
  • 45
    Bullough JD, Rea MS, Figueiro MG. Of mice and women: light as a circadian stimulus in breast cancer research. Cancer Causes Control 2006; 17:375383.
  • 46
    Reiter RJ, Tan DX, Osuna C et al. Actions of melatonin in the reduction of oxidative stress. J Biomed Sci 2000; 7:444458.
  • 47
    Tan DX, Manchester LC, Terron MP et al. One molecule, many derivatives: a never-ending interaction with melatonin with reactive oxygen and nitrogen species? J Pineal Res 2007; 42:2842.
  • 48
    Cruz A, Padillo FJ, Granados J et al. Effect of melatonin on cholestatic oxidative stress under constant light exposure. Cell Biochem Funct 2003; 21:377380.
  • 49
    Rodriguez C, Mayo JC, Sainz RM et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 2004; 36:19.
  • 50
    Benot S, Goberna R, Reiter RJ et al. Physiological levels of melatonin contribute to the antioxidant capacity of human serum. J Pineal Res 1999; 27:5964.
  • 51
    Túnez I, Muñoz M, Feijoo M et al. Melatonin effect on renal oxidative stress under constant light exposure. Cell Biochem Funct 2003; 21:3540.
  • 52
    Urata Y, Honma S, Goto S et al. Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic Biol Med 1999; 27:838847.
  • 53
    D’almeida V, Lobo LL, Hipolide DC et al. Sleep deprivation induces brain region-specific decreases in glutathione levels. Neuroreport 1998; 9:28532856.
  • 54
    Moore CB, Siopes TD. Effects of lighting conditions and melatonin supplementation on the cellular and humoral immune responses in Japanese quail Coturnix coturnix japonica. Gen Comp Endocrinol 2000; 119:95104.
  • 55
    Kirby JD, Froman DP. Research note: evaluation of humoral and delayed hypersensitivity responses in cockerals reared under constant light or a twelve hour light: twelve hour dark photoperiod. Poult Sci 1991; 70:23752378.
  • 56
    Oishi K, Shibusawa K, Kakazu H et al. Extended light exposure suppresses nocturnal increases in cytotoxic activity of splenic natural killer cells in rats. Biol Rhythm Res 2006; 37:2135.
  • 57
    Vaughan MK, Hubbard GB, Champney TH et al. Splenic hypertrophy and extramedullary hematopoiesis induced in male Syrian hamsters by short photoperiod or melatonin injections and reversed by melatonin pellets or pinealectomy. Am J Anat 1987; 179:131136.
  • 58
    Refii-El-Idrissi M, Calvo JR, Giordano M et al. Specific binding of 2-[125I]iodomelatonin by rat spleen crude membranes: day-night variations and effect of pinealectomy and continuous light exposure. J Pineal Res 1996; 20:3338.
  • 59
    Carrillo-Vico A, Guerrero JM, Lardone PJ et al. A review of the multiple actions of melatonin on the immune system. Endocrine 2005; 27:189200.
  • 60
    Moldofsky H, Lue FA, Davidson JR et al. Effects of sleep deprivation on human immune function. FASEB J 1989; 3:19721977.
  • 61
    Meerlo P, Koehl M, Van Der Borght K et al. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress. J Neuroendocrinol 2002; 14:397402.
  • 62
    Blask DE, Brainard G, Dauchy R et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res 2005; 65:1117411184.
  • 63
    Schernhammer E, Schulmeister K. Melatonin and cancer risk: does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Br J Cancer 2004; 90:941943.
  • 64
    Hansen J. Increased breast cancer risk among women who work predominantly at night. Epidemiology 2001; 12:7477.
  • 65
    Hansen J. Light at night, shiftwork, and breast cancer risk. J Natl Cancer Inst 2001; 93:15131515.
  • 66
    Davis R. Light exposure and breast cancer. Epidemiology 1991; 2:458459.
  • 67
    Schernhammer E, Laden F, Speizer FE et al. Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 2001; 93:15631568.
  • 68
    Nelson RJ, Blom J. Photoperiodic effects on tumor development and immune function. J Biol Rhythms 1994; 9:233249.
  • 69
    Blask DE, Sauer L, Dauchy R. Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Curr Top Med Chem 2002; 2:113132.
  • 70
    Cos S, Mediavilla D, Martinez-Campa C et al. Exposure to light-at-night increases the growth of DMBA-induced mammary adenocarcinomas in rats. Cancer Lett 2006; 235:266271.
  • 71
    Das Gupta TK, El-Domeiri AA. The influence of pineal ablation and administration of melatonin on growth on growth and spread of hamster melanoma. J Surg Oncol 1976; 8:197205.
  • 72
    Lapin V, Frowein A. Effects of growing tumors on pineal melatonin levels in male rats. J Neural Transm 1981; 52:123136.
  • 73
    Tamarkin L, Cohen M, Roselle D. Melatonin inhibition and pinealectomy enhancement of 7,12-dimethylbenz(a)anthracene induced mammary tumors in the rat. Cancer Res 1981; 41:44324436.
  • 74
    Bartsch C, Bartsch H. The anti-tumor activity of pineal melatonin and cancer enhancing life styles in industrialized societies. Cancer Causes Control 2006; 17:559571.
  • 75
    Anisimov V, Baturin D, Popovich I et al. Effect of exposure to light-at-night on life span and spontaneous carcinogenesis in female CBA mice. Int J Cancer 2004; 111:475479.
  • 76
    Reiter RJ. The pineal and its hormones in the control of reproduction in mammals. Endocr Rev 1980; 1:109131.
  • 77
    Blask DE, Hill SM. Effects of melatonin on cancer: studies on MCF-7 human breast cancer cells in culture. J Neural Transm Suppl 1986; 21:433439.
  • 78
    Sanchez-Barcelo E, Cos S, Mediavilla D et al. Melatonin-estrogen interactions in breast cancer. J Pineal Res 2005; 38:217222.
  • 79
    Reierth E, Van’t Hof T. Seasonal and daily variation in plasma melatonin in the high-arctic Svalbard Ptarmigan (Lagopus Mutus Hyperboreus). J Biol Rhythms 1999; 14:314319.
  • 80
    Longcore T, Rich C. Ecological light pollution. Front Ecol Environ 2004; 2:191198.
  • 81
    Burger JW. A review of experimental investigations on seasonal reproduction in birds. Wilson Bull 1949; 61:211230.
  • 82
    Rowan W. Relation of light to bird migration and developmental changes. Nature 1925; 115:494495.
  • 83
    Baker JR, Ranson RM. Factors affecting the breeding of the field mouse (Microtus agrestis). Part I. Light. Proc R Soc Lond 1932; 110:313323.
  • 84
    Fiske VM. Effect of light on sexual maturation, estrous cycles, and anterior pituitary of the rat. Endocrinology 1941; 29:187196.
  • 85
    Lawton I, Schwartz NB. Pituitary-ovarian function in rats exposed to constant light: a chronological study. Endocrinology 1967; 81:497508.
  • 86
    Mccormack CE, Sridarian R. Timing of ovulation in rats during exposure to constant light: evidence for a circadian rhythm of luteinizing hormone secretion. J Endocrinol 1978; 76:135144.
  • 87
    Piacsek BE, Meites J. Reinitiation of gonadotropin release in underfed rats by constant light or epinephrine. Endocrinology 1967; 81:535541.
  • 88
    Thomas BB, Oomman MM. Constant light and blinding effects on reproduction of male South Indian gerbils. J Exp Zool 2001; 289:5965.
  • 89
    Proudman JA, Opel H. Turkey prolactin: validation of a radioimmunoassay and measurement of changes associated with broodiness. Biol Reprod 1981; 25:573580.
  • 90
    Duston J, Bromage N. Photoperiodic mechanisms and rhythms of reproduction in the female trout. Fish Physiol Biochem 1986; 2:3551.
  • 91
    Derrickson KC. Variation in repertoire presentation in northern mockingbirds. Condor 1988; 90:592606.
  • 92
    Lima SL. Putting predators back into behavioral predator-prey interactions. TREE 2002; 17:7075.
  • 93
    Mougeot F, Bretagnolle V. Predation risk and moonlight avoidance in nocturnal seabirds. J Avian Biol 2000; 31:376386.
  • 94
    Clarke JA. Moonlight’s influence on predator/prey interactions between short eared owls (Asio flammeus) and deermice (Peromyscus maniculatus). Behav Ecol Sociobiol 1983; 13:205209.
  • 95
    Daly M, Behrends PR, Wilson MI et al. Behavioural modulation of predation risk: moonlight avoidance and crepuscular compensation in a nocturnal desert rodent, Dipodomys merriami. Anim Behav 1992; 44:19.
  • 96
    Morrison DW. Lunar phobia in the neotropical fruit bat, Artibeus jamaicensus (Chiroptera: Phyllostomidae). Anim Behav 1978; 26:852855.
  • 97
    Skutelsky O. Predation risk and state-dependent foraging in scorpions: effects of moonlight on foraging in the scorpion Buthus occitanus. Anim Behav 1996; 52:4957.
  • 98
    Imber MJ. Behaviour of petrels in relation to the moon and artificial lights. Notornis 1975; 22:302306.
  • 99
    James PL, Heck KL Jr. The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitat. J Exp Mar Biol Ecol 1994; 176:187200.
  • 100
    Brown JS, Kotler BP, Smith RJ et al. The effects of owl predation on the foraging behavior of heteromyid rodents. Oecologia 1988; 76:408415.
  • 101
    Rydell J. Seasonal use of illuminated areas by foraging northern bats Eptesicus nilssoni. Ecography 1991; 14:203207.
  • 102
    Rydell J. Exploitation of insects around streetlamps by bats in Sweden. Funct Ecol 1992; 6:744750.
  • 103
    Froy O, Gotter AL, Casselman AL et al. Illuminating the circadian clock in monarch butterfly migration. Science 2003; 300:1303.
  • 104
    Tarlow EM, Hau M, Anderson DJ et al. Diel changes in plasma melatonin and corticosterone concentrations in tropical Nazca boobies (Sula granti) in relation to moon phase and age. Gen Comp Endocrinol 2003; 133:297304.
  • 105
    Gal G, Loew ER, Rudstam LG et al. Light and diel vertical migration: spectral sensitivity and light avoidance by Mysis relicta. Can J Fish Aquat Sci 1999; 56:311322.
  • 106
    Moore MV, Pierce SM, Walsh HM et al. Urban light pollution alters the diel vertical migration of Daphnia. Verh Int Verein Limnol 2000; 27:14.
  • 107
    Petersen CGJ. The influence of light on migrations of the eel. Rep Danish Bio Stat 1906; 14:29.
  • 108
    Lowe RH. The influence of light and other factors on the seaward migration of the silver eel (Anguilla anguilla L.). J Anim Ecol 1952; 21:275309.
  • 109
    Grau EG, Dickhoff WW, Nishioka RS et al. Lunar phasing of the thyroxine surge preparatory to seaward migration of salmonid fish. Science 1981; 211:607609.
  • 110
    Salmon M, Witherington BE. Artificial lighting and seafinding by loggerhead hatchlings: evidence for lunar modulation. Copeia 1995; 4:931938.
  • 111
    Gwinner E. Circadian and circannual programmes in avian migration. J Exp Biol 1996; 199:3948.
  • 112
    Schneider TS, Thalau HP, Semm P et al. Melatonin is crucial for the migratory orientation of pied flycatchers (Ficedula hypoleuca pallas). J Exp Biol 1994; 194:255262.