Get access

Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production

Authors

  • Ana López,

    1. Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
    Search for more papers by this author
  • José A. García,

    1. Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
    Search for more papers by this author
  • Germaine Escames,

    1. Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
    Search for more papers by this author
  • Carmen Venegas,

    1. Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
    Search for more papers by this author
  • Francisco Ortiz,

    1. Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
    Search for more papers by this author
  • Luis C. López,

    1. Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
    Search for more papers by this author
  • D. Acuña-Castroviejo

    1. Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
    2. Laboratorio de Análisis Clínicos, Hospital Universitario San Cecilio, Granada, Spain
    Search for more papers by this author

Address reprint requests to Darío Acuña-Castroviejo, M.D., Ph.D., Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain.
E-mail: dacuna@ugr.es

Abstract

Abstract:  The role of melatonin in improving mitochondrial respiratory chain activity and increasing ATP production in different experimental conditions has been widely reported. To date, however, the mechanism(s) involved are largely unknown. Using high-resolution respirometry, fluorometry and spectrophotometry we studied the effects of melatonin on normal mitochondrial functions. Mitochondria were recovered from mouse liver cells and incubated in vitro with melatonin at concentrations ranging from 1 nm to 1 mm. Melatonin decreased oxygen consumption concomitantly with its concentration, inhibited any increase in oxygen flux in the presence of an excess of ADP, reduced the membrane potential, and consequently inhibited the production of superoxide anion and hydrogen peroxide. At the same time it maintained the efficiency of oxidative phosphorylation and ATP synthesis while increasing the activity of the respiratory complexes (mainly complexes I, III, and IV). The effects of melatonin appeared to be due to its presence within the mitochondria, since kinetic experiments clearly showed its incorporation into these organelles. Our results support the hypothesis that melatonin, together with hormones such as triiodothyronine, participates in the physiological regulation of mitochondrial homeostasis.

Ancillary