Melatonin reduces cardiac inflammatory injury induced by acute exercise


Address reprint requests to Pilar S. Collado, PhD, Institute of Biomedicine, University of León, 24071-León, Spain.


Abstract:  Cardiac muscle tissue, when stimulated by acute exercise, presents increased signs of cell damage. This study was designed to investigate whether overexpression of inflammatory mediators induced in the heart by acute exercise could be prevented by melatonin and whether the protective effect of melatonin was related with inhibition of nuclear factor kappa B (NF-κB) activation. Male Wistar rats received melatonin i.p. at a dose of 1.0 mg/kg body weight 3 min before being exercised for 60 min on a treadmill at a speed of 25 m/min and a 10% slope. Exercise was associated with a significant increase in myeloperoxidase activity and in TNF-α, IL-1 and IL-6 mRNA levels. Both mRNA level and protein concentrations of intercellular adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2 were also significantly elevated. A significant activation of nuclear factor kappa B (NF-κB) was observed in exercised rats. These effects were totally or partially prevented by melatonin administration. Data obtained indicate that melatonin protects against heart damage caused by acute exercise. Impaired production of noxious mediators involved in the inflammatory process and down-regulation of the NF-κB signal transduction pathway appear to contribute to the beneficial effects of melatonin.