SEARCH

SEARCH BY CITATION

References

  • 1
    Kaseda H, Noguchi T, Kido R. Biosynthetic routes to 2-aminoacetophenone and 2-amino-3-hydroxyacetophenone. J Biochem 1973; 74:127133.
  • 2
    Dorris RL. A simple method for screening monoamine oxidase (MAO) inhibitory drugs for type preference. J Pharmacol Methods 1982; 7:133137.
  • 3
    Jones TZ, Balsa D, Unzeta M, Ramsay RR. Variations in activity and inhibition with pH: the protonated amine is the substrate for monoamine oxidase, but uncharged inhibitors bind better. J Neural Transm 2007; 114:707712.
  • 4
    Balzer I, Hardeland R. Action of kynuramine in a dinoflagellate: stimulation of bioluminescence in Gonyaulax polyedra. Comp Biochem Physiol 1989; 94C:129132.
  • 5
    Balzer I, Hardeland R. Circadian rhythmicity in the stimulation of bioluminescence by biogenic amines and MAO inhibitors in Gonyaulax polyedra. Int J Biometeorol 1991; 34:231234.
  • 6
    Hardeland R. The presence and function of melatonin and structurally related indoleamines in a dinoflagellate, and a hypothesis on the evolutionary significance of these tryptophan metabolites in unicellulars. Experientia 1993; 49:614622.
  • 7
    Hirata F, Hayaishi O, Tokuyama T, Senoh S. In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem 1974; 249:13111313.
  • 8
    Hardeland R, Poeggeler B, Balzer I, Behrmann G. Common basis of photoperiodism in phylogenetically distant organisms and its possible origins. J Interdiscipl Cycle Res 1991; 22:122123.
  • 9
    Hardeland R, Fuhrberg B, Behrmann G, Balzer I. Sleep-latency reducing pineal hormone melatonin as a scavenger of free radicals: hemin-catalysed formation of N1-acetyl-N2-formyl-5-methoxykynuramine. J Sleep Res 1993; 22:621.
  • 10
    Hardeland R, Poeggeler B, Balzer I, Behrmann G. A hypothesis on the evolutionary origins of photoperiodism based on circadian rhythmicity of melatonin in phylogenetically distant organisms. In: Chronobiology & Chronomedicine. GutenbrunnerC, HildebrandtG, MoogR, eds. Lang, Frankfurt/M, 1993; pp. 113120.
  • 11
    Tan D-X, Chen L-D, Poeggeler B et al. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1993; 1:5760.
  • 12
    Reiter RJ, Poeggeler B, Tan D-X et al. Antioxidant capacity of melatonin: a novel action not requiring a receptor. Neuro Endocrinol Lett 1993; 15:103116.
  • 13
    Poeggeler B, Reiter RJ, Hardeland R et al. Melatonin and structurally-related, endogenous indoles act as potent electron donors and radical scavengers in vitro. Redox Rep 1996; 2:179184.
  • 14
    Hirata F, Hayaishi O. New degradative routes of 5-hydroxytryptophan and serotonin by intestinal tryptophan 2,3-dioxygenase. Biochem Biophys Res Commun 1972; 47:11121119.
  • 15
    Shimizu T, Nomiyama S, Hirata F, Hayaishi O. Indoleamine 2,3-dioxygenase. Purification and some properties. J Biol Chem 1978; 253:47004706.
  • 16
    Sun Y. Indoleamine 2,3-dioxygenase – a new antioxidant enzyme. Mater Med Pol 1989; 21:244250.
  • 17
    Taylor MW, Feng GS. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 1991; 5:25162522.
  • 18
    Takikawa O. Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism. Biochem Biophys Res Commun 2005; 338:1219.
  • 19
    King NJ, Thomas SR. Molecules in focus: indoleamine 2,3-dioxygenase. Int J Biochem Cell Biol 2007; 39:21672172.
  • 20
    Hirata F, Hayaishi O. Studies on indoleamine 2,3-dioxygenase. I. Superoxide anion as substrate. J Biol Chem 1975; 250:59605966.
  • 21
    Taniguchi T, Sono M, Hirata F et al. Indoleamine 2,3-dioxygenase. Kinetic studies on the binding of superoxide anion and molecular oxygen to enzyme. J Biol Chem 1979; 254:32883294.
  • 22
    Fuhrberg B, Hardeland R. Oxidation of melatonin by free radicals: catalysis by hemin. In: Cell Biological Problems in Chronobiology. HardelandR, ed. University of Göttingen, Göttingen, 1994; pp. 7581.
  • 23
    Hardeland R, Fuhrberg B. Ubiquitous melatonin – presence and effects in unicells, plants and animals. Trends Comp Biochem Physiol 1996; 2:2545.
  • 24
    Poeggeler B, Thuermann S, Dose A et al. Melatonin’s unique radical scavenging properties – roles of its functional substituents as revealed by a comparison with its structural analogs. J Pineal Res 2002; 33:2030.
  • 25
    Hardeland R, Poeggeler B, Niebergall R, Zelosko V. Oxidation of melatonin by carbonate radicals and chemiluminescence emitted during pyrrole ring cleavage. J Pineal Res 2003; 34:1725.
  • 26
    Hayaishi O, Yoshida R. Rhythms and physiological significance of indoleamine 2,3-dioxygenase. In: Biological Rhythms and Their Central Mechanism. SudaM, HayaishiO, NakagawaH, eds. Elsevier/North Holland, Amsterdam, 1979; pp. 133141.
  • 27
    Hardeland R, Ressmeyer A-R, Zelosko V et al. Metabolites of melatonin: formation and properties of the methoxylated kynuramines AFMK and AMK. In: Recent Advances in Endocrinology and Reproduction: Evolutionary, Biotechnological and Clinical Applications. HaldarC, SinghSS, eds. Banaras Hindu University, Varanasi, 2004; pp. 2138.
  • 28
    Hardeland R. Melatonin, eine ubiquitäre Substanz. Vorkommen, Wirkungen und Metabolismus außerhalb seiner klassischen Rolle. Abh Sächs Akad Wiss Math-Nat Kl, Endokrinologie Pt 2 2005; 63:75106.
  • 29
    Pandi-Perumal SR, Srinivasan V, Maestroni GJM et al. Melatonin – nature’s most versatile biological signal? FEBS J 2006; 273:28132838.
  • 30
    Hardeland R. 5-Methoxylated kynuramines – biologically active melatonin metabolites and sources of new products. In: Melatonin – From Molecules to Therapy. Pandi-PerumalSR, CardinaliDP, eds. Nova Science, Hauppauge, NY, 2007; pp. 2332.
  • 31
    Ximenes VF, Catalani LH, Campa A. Oxidation of melatonin and tryptophan by an HRP cycle involving compound III. Biochem Biophys Res Commun 2001; 287:130134.
  • 32
    Rodrigues MR, Rodriguez D, Catalani LH et al. Interferon-gamma independent oxidation of melatonin by macrophages. J Pineal Res 2003; 34:6974.
  • 33
    Silva SO, Rodrigues MR, Carvalho SR et al. Oxidation of melatonin and its catabolites, N1-acetyl-N2-formyl-5-methoxykynuramine and N1-acetyl-5-methoxykynuramine, by activated leukocytes. J Pineal Res 2004; 37:171175.
  • 34
    Ximenes VF, Silva SO, Rodrigues MR et al. Superoxide-dependent oxidation of melatonin by myeloperoxidase. J Biol Chem 2005; 280:3816038169.
  • 35
    Ferry G, Ubeaud C, Lambert PH et al. Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: investigations with both indoleamine 2,3-dioxygenase and myeloperoxidase. Biochem J 2005; 388:205215.
  • 36
    Ximenes VF, Fernandes JR, Bueno VB et al. The effect of pH on horseradish peroxidase-catalyzed oxidation of melatonin: production of N1-acetyl-N2-5-methoxykynuramine versus radical-mediated degradation. J Pineal Res 2007; 42:291296.
  • 37
    Ximenes VF, Rodrigues AP, Cabello C et al. The co-catalytic effect of chlorpromazine on peroxidase-mediated oxidation of melatonin: enhanced production of N1-acetyl-N2-formyl-5-methoxykynuramine. J Pineal Res 2008; 44:115120.
  • 38
    Ximenes VF. Optimized synthesis of the melatonin metabolite N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK). J Pineal Res 2008; 45:297301.
  • 39
    Tesoriere L, Allegra M, D’Arpa D et al. Reaction of melatonin with hemoglobin-derived oxoferryl radicals and inhibition of the hydroperoxide-induced hemoglobin denaturation in red blood cells. J Pineal Res 2001; 31:114119.
  • 40
    Tesoriere L, Avellone G, Ceraulo L et al. Oxidation of melatonin by oxoferryl hemoglobin: a mechanistic study. Free Radic Res 2001; 35:633642.
  • 41
    Semak I, Naumova M, Korik E et al. A novel metabolic pathway of melatonin: oxidation by cytochrome C. Biochemistry 2005; 44:93009307.
  • 42
    Uría H, Fuhrberg B, Poeggeler B et al. Photooxidation of melatonin. In: Cell Biological Problems in Chronobiology. HardelandR, ed. University of Göttingen, Göttingen, 1994; pp. 8999.
  • 43
    Hardeland R, Balzer I, Poeggeler B et al. On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a unicell, photooxidation and scavenging of free radicals. J Pineal Res 1995; 18:104111.
  • 44
    De Almeida EA, Martinez GR, Klitzke CF et al. Oxidation of melatonin by singlet molecular oxygen (O2(1Δg)) produces N1-acetyl-N2-formyl-5-methoxykynurenine. J Pineal Res 2003; 35:131137. [Remark: according to formula and mechanism, authors obviously mean N1-acetyl-N2-formyl-5-methoxykynuramine=AFMK, not the corresponding kynurenine.]
  • 45
    Behrmann G, Uría H, Fuhrberg B et al. Melatonin terminiert photooxidative radikalische Reaktionsketten. Verh Dtsch Zool Ges 1995; 88:94.
  • 46
    Burkhardt S, Poeggeler B, Tan D-X et al. Oxidation products formed from melatonin in various radical-generating systems. In: Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites. HardelandR, ed. Cuvillier, Göttingen, 2001; pp. 922.
  • 47
    Tan D-X, Manchester LC, Burkhardt S et al. N1-Acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J 2001; 15:22942296.
  • 48
    Brömme HJ, Peschke E, Israel G. Photo-degradation of melatonin: influence of argon, hydrogenperoxide, and ethanol. J Pineal Res 2008; 44:366372.
  • 49
    Uría H, Hardeland R, Menéndez-Peláez A, Fuhrberg B. Extracts of the Syrian hamster Harderian gland catalyse photooxidation of melatonin. In: Cellular Rhythms and Indoleamines. HardelandR, ed. University of Göttingen, Göttingen, 1995; pp. 140144.
  • 50
    Behrmann G, Fuhrberg B, Hardeland R et al. Photooxidation of melatonin, 5-methoxytryptamine and 5-methoxytryptophol: aspects of photoprotection by periodically fluctuating molecules? Biometeorology 1997; 14 Pt 2/2:258263.
  • 51
    Tomás-Zapico C, Hardeland R, Poeggeler B, Coto-Montes A. 3-Hydroxyanthranilic acid and 3-hydroxykynurenine as photooxidants: catalysis of N1-acetyl-N2-formyl-5-methoxykynuramine formation from melatonin. In: Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites. HardelandR, ed. Cuvillier, Göttingen, 2001; pp. 136141.
  • 52
    Hardeland R, Poeggeler B, Burkhardt S et al. Oxidation chemistry of melatonin: New aspects of radical reactions. In: Neuroendocrine System and Pineal Gland With Special Reference to Lifestock. HaldarC, SinghSS, eds. Banaras Hindu University, Varanasi, 2003; pp. 2735.
  • 53
    Tan D-X, Manchester LC, Sainz RM et al. Interactions between melatonin and nicotinamide nucleotide: NADH preservation in cells and in cell-free systems by melatonin. J Pineal Res 2005; 39:185194.
  • 54
    Hardeland R, Reiter RJ, Poeggeler B, Tan D-X. The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 1993; 17:347357.
  • 55
    Hardeland R, Zelosko V, Niebergall R et al. Interactions of carbonate radicals (CO3) with melatonin detected by chemiluminescence. Clin Lab 2003; 49:556.
  • 56
    Hardeland R, Niebergall R, Schoenke M, Poeggeler B. Carbonate radicals as initiators of melatonin oxidation: Chemiluminescence and formation of oxidation products. In: Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites. HardelandR, ed. Cuvillier, Göttingen, 2001; pp. 4955.
  • 57
    Zelosko V, Libau K, Hardeland R. Product analyses reveal rapid and preferential conversion of melatonin to AFMK under the influence of carbonate radicals. In: Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites. HardelandR, ed. Cuvillier, Göttingen, 2001; pp. 5657.
  • 58
    Tan D-X, Hardeland R, Manchester LC et al. Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J Pineal Res 2003; 34:249259.
  • 59
    Hardeland R. Photooxidation of melatonin: catalysis by extracts from Pterygophora californica (Phaeophyceae). In: Metabolism and Cellular Dynamics of Indoles. HardelandR, ed. University of Göttingen, Göttingen, 1996; pp. 149152.
  • 60
    Gawron E, Hardeland R. Photocatalytic destruction of melatonin by chlorophyll. In: Studies on Antioxidants and Their Metabolites. HardelandR, ed. Cuvillier, Göttingen, 1999; pp. 9598.
  • 61
    Behrends A, Hardeland R, Ness H et al. Photocatalytic actions of the pesticide metabolite 2-hydroxyquinoxaline: destruction of antioxidant vitamines and biogenic amines – implications of organic redox cycling. Redox Rep 2004; 9:279288.
  • 62
    Behrends A, Riediger S, Grube S et al. Photocatalytic mechanisms of indoleamine destruction by the quinalphos metabolite 2-hydroxyquinoxaline: a study on melatonin and its precursors serotonin and N-acetylserotonin. J Environ Sci Health B 2007; 42:599606.
  • 63
    Schoenke M, Poeggeler B, Burkhardt S et al. A comparative study on products formed from indoleamines in radical-generating systems. In: Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites. HardelandR, ed. Cuvillier, Göttingen, 2001; pp. 3238.
  • 64
    Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 2005; 27:119130.
  • 65
    Burkhardt S, Reiter RJ, Tan D-X et al. DNA oxidatively damaged by chromium(III) and H2O2 is protected by the antioxidants melatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, resveratrol and uric acid. Int J Biochem Cell Biol 2001; 33:775783.
  • 66
    Tan D-X, Reiter RJ, Manchester LC et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2:181197.
  • 67
    Tan D-X, Manchester LC, Reiter RJ et al. A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun 1998; 253:614620.
  • 68
    Tan D-X, Manchester LC, Reiter RJ, Plummer BF. Cyclic 3-hydroxymelatonin: a melatonin metabolite generated as a result of hydroxyl radical scavenging. Biol Signals Recept 1999; 8:7074.
  • 69
    Stasica P, Paneth P, Rosiak JM. Hydroxyl radical reaction with melatonin molecule: a computational study. J Pineal Res 2000; 29:125127.
  • 70
    Horstman JA, Wrona MZ, Dryhurst G. Further insights into the reaction of melatonin with hydroxyl radical. Bioorg Chem 2002; 30:371382.
  • 71
    Hardeland R. Melatonin, hormone of darkness and more – occurrence, control mechanisms, actions and bioactive metabolites. Cell Mol Life Sci 2008; 65:20012018.
  • 72
    Mueller U, Hardeland R, Poeggeler B et al. Pathways of melatonin catabolism in the dinoflagellate Gonyaulax polyedra. Biol Rhythm Res 2001; 32:465.
  • 73
    Agozzino P, Avellone G, Bongiorno D et al. Melatonin: structural characterization of its non-enzymatic mono-oxygenate metabolite. J Pineal Res 2003; 35:269275.
  • 74
    Semak I, Korik E, Antonova M et al. Metabolism of melatonin by cytochrome P450s in rat liver mitochondria and microsomes. J Pineal Res 2008; 45:515523.
  • 75
    Hardeland R, Fuhrberg B, Zsizsik BK, Poeggeler B. Chemiluminescence as a tool for monitoring the oxidation of indolic and quinaldic radical scavengers. Eur J Clin Chem Clin Biochem 1997; 35:A108.
  • 76
    Zsizsik BK, Hardeland R. Indole-3-pyruvic acid as a free radical scavenger: chemiluminescence and fluorescence measurements and effects of inhibitors. In: Biological Rhythms and Antioxidative Protection. HardelandR, ed. Cuvillier, Göttingen, 1997; pp. 147152.
  • 77
    Hardeland R, Zsizsik BK, Fuhrberg B. Chemiluminescence during oxidation of indolic and quinaldic free-radical scavengers. J Biolum Chemilum 1998; 13:204.
  • 78
    Hardeland R, Zsizsik BK, Poeggeler B et al. Indole-3-pyruvic and -propionic acids, kynurenic acid and related metabolites as luminophores and free-radical scavengers. Adv Exp Med Biol 1999; 467:389395.
  • 79
    Wendler J, Holst S, Hardeland R et al. Phenolic and indolic radical scavengers as luminophores. In: Bioluminescence and Chemiluminescence 2000. CaseJF, HerringPJ, RobisonBH, HaddockSHD, KrickaLJ, StanleyPE, eds. World Scientific Publishers, Singapore, 2001; pp. 255258.
  • 80
    Thuermann S, Hardeland R, Poeggeler B. Melatonin and its analogs as luminophores. a comparative study on chemiluminescence emitted during oxidation in a moderately alkaline, hemin-catalyzed H2O2 system. In: Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites. HardelandR, ed. Cuvillier, Göttingen, 2001; pp. 3948.
  • 81
    Uemura T, Kadota K. Serotonin- and melatonin-dependent light emission induced by xanthine oxidase. In: Progress in Tryptophan and Serotonin Research. SchlossbergerHG, KochenW, LinzenB, SteinhartH, eds. Walter de Gruyter, Berlin, 1984; pp. 673676.
  • 82
    Huether G, Reimer A, Schmidt F et al. Oxidation of the indole nucleus of 5-hydroxytryptamine and formation of dimers in the presence of peroxidase and H2O2. J Neural Transm Suppl 1990; 32:249257.
  • 83
    Schuff-Werner P, Splettstosser W, Schmidt F, Huether G. Serotonin acts as a radical scavenger and is oxidized to a dimer during the respiratory burst of human mononuclear and polymorphonuclear phagocytes. Eur J Clin Invest 1995; 25:477484.
  • 84
    Huether G, Fettkötter I, Keilhoff G, Wolf G. Serotonin acts as a radical scavenger and is oxidized to a dimer during the respiratory burst of activated microglia. J Neurochem 1997; 69:20962101.
  • 85
    Uemura T, Kanashiro M, Yamano T et al. Isolation, structure, and properties of the β-carboline formed from 5-hydroxytryptamine by the superoxide anion-generating system. J Neurochem 1988; 51:710717.
  • 86
    Hryhorczuk LM, Rainey JM Jr, Frohman CE, Novak EA. A new metabolic pathway for N,N-dimethyltryptamine. Biol Psychiatry 1986; 21:8493.
  • 87
    Harthé C, Claudy D, Déchaud H et al. Radioimmunoassay of N-acetyl-N-formyl-5-methoxykynuramine (AFMK): a melatonin oxidative metabolite. Life Sci 2003; 73:15871597.
  • 88
    Rozov SV, Filatova EV, Orlov AA et al. N1-acetyl-N2-formyl-5-methoxykynuramine is a product of melatonin oxidation in rats. J Pineal Res 2003; 35:245250.
  • 89
    Hardeland R, Pandi-Perumal SR. Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab (Lond) 2005; 2:article no. 22 [DOI DOI: 10.1186/1743-7075-2-22].
  • 90
    Hardeland R, Poeggeler B. Actions of melatonin, its structural and functional analogs in the central nervous system and the significance of metabolism. Cent Nerv Syst Agents Med Chem 2007; 7:289303.
  • 91
    Hardeland R, Poeggeler B. Melatonin beyond its classical functions. Open Physiol J 2008; 1:123.
  • 92
    Fischer TW, Sweatman TW, Semak I et al. Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J 2006; 20:15641566.
  • 93
    Hardeland R, Pandi-Perumal SR, Poeggeler B. Melatonin in plants – focus on a vertebrate night hormone with cytoprotective properties. Funct Plant Sci Biotechnol 2007; 1:3245.
  • 94
    Tan D-X, Manchester LC, Di Mascio P et al. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J 2007; 21:17241729.
  • 95
    Poeggeler B, Hardeland R. Observations on melatonin oxidation and metabolite release by unicellular organisms and small aquatic metazoans. In: Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites. HardelandR, ed. Cuvillier, Göttingen, 2001; pp. 6669.
  • 96
    Budu A, Peres R, Bueno VB et al. N1-acetyl-N2-formyl-5-methoxykynuramine modulates the cell cycle of malaria parasites. J Pineal Res 2007; 42:261266.
  • 97
    Hardeland R, Poeggeler B. Non-vertebrate melatonin. J Pineal Res 2003; 34:233241.
  • 98
    Tan DX, Manchester LC, Terron MP et al. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 2007; 42:2842.
  • 99
    Bubenik GA. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci 2002; 47:23362348.
  • 100
    Messner M, Hardeland R, Rodenbeck A, Huether G. Tissue retention and subcellular distribution of continuously infused melatonin in rats under near physiological conditions. J Pineal Res 1998; 25:251259.
  • 101
    Tan D-X, Manchester LC, Reiter RJ et al. High physiological levels of melatonin in the bile of mammals. Life Sci 1999; 65:25232529.
  • 102
    Silva SO, Ximenes VF, Livramento JA et al. High concentrations of the melatonin metabolite, N1-acetyl-N2-formyl-5-methoxykynuramine, in cerebrospinal fluid of patients with meningitis: a possible immunomodulatory mechanism. J Pineal Res 2005; 39:302306.
  • 103
    Hopsu VK, Santti R, Glenner GG. Characterization of enzymes hydrolyzing acylnaphthylamides. 3. Role of kynurenine formamidase. J Histochem Cytochem 1966; 14:653657.
  • 104
    Jacobson KB. A new substrate for formylkynurenine formamidase: N’,Nα-diformylkynurenine. Arch Biochem Biophys 1978; 186:8488.
  • 105
    Kelly RW, Amato F, Seamark RF. N-acetyl-5-methoxy kynurenamine, a brain metabolite of melatonin, is a potent inhibitor of prostaglandin biosynthesis. Biochem Biophys Res Commun 1984; 121:372379.
  • 106
    Tan D-X, Manchester LC, Reiter RJ et al. Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 2000; 9:137159.
  • 107
    Seever K, Hardeland R. Novel pathway for N1-acetyl-5-methoxykynuramine: UVB-induced liberation of carbon monoxide from precursor N1-acetyl-N2-formyl-5-methoxykynuramine. J Pineal Res 2008; 44:450455.
  • 108
    Hardeland R, Uría H. On the role of melatonin in mammalian Harderian glands: does melatonin protect from free radicals generated by protoporphyrin-catalysed photooxidation? In: Cellular Rhythms and Indoleamines. HardelandR, ed. University of Göttingen, Göttingen, 1995; pp. 145151.
  • 109
    Tomás-Zapico C, Martínez-Fraga J, Rodríguez-Colunga MJ et al. Melatonin protects against δ-aminolevulinic acid-induced oxidative damage in male Syrian hamster Harderian glands. Int J Biochem Cell Biol 2002; 34:544553.
  • 110
    Schaefer M, Hardeland R. The melatonin metabolite N1-acetyl-5-methoxykynuramine is a potent singlet oxygen scavenger. J Pineal Res 2009; 46:4952.
  • 111
    Ressmeyer AR, Mayo JC, Zelosko V et al. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep 2003; 8:205213.
  • 112
    Collon F, Bonnefort-Rousselot D, Yous S et al. Online H/D echange liquid chromatography as a support for the mass spectrometric identification of the oxidation products of melatonin. J Mass Spectrom 2009; 44:318329.
  • 113
    Rosen J, Than NN, Koch D et al. Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J Pineal Res 2006; 41:374381.
  • 114
    Koehler A. Untersuchungen zum Redox-Verhalten des Melatonin-Metaboliten N1-Acetyl-5-methoxykynuramin (AMK). Diploma thesis. University of Göttingen, Göttingen, 2007.
  • 115
    Than NN, Heer C, Laatsch H, Hardeland R. Reactions of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK) with the ABTS cation radical: identification of new oxidation products. Redox Rep 2006; 11:1524.
  • 116
    Schueth A. Interaktion von Tyrosin mit dem Melatoninmetaboliten AMK. Diploma thesis. University of Göttingen, Göttingen, 2007.
  • 117
    Guenther AL, Schmidt SI, Laatsch H et al. Reactions of the melatonin metabolite AMK (N1-acetyl-5-methoxykynuramine) with reactive nitrogen species: formation of novel compounds, 3-acetamidomethyl-6-methoxycinnolinone and 3-nitro-AMK. J Pineal Res 2005; 39:251260.
  • 118
    Hardeland R, Backhaus C, Fadavi A, Hess M. N1-acetyl-5-methoxykynuramine contrasts with other tryptophan metabolites by a peculiar type of NO scavenging: cyclization to a cinnolinone prevents formation of unstable nitrosamines. J Pineal Res 2007; 43:104105.
  • 119
    Hardeland R, Backhaus C, Fadavi A. Reactions of the NO redox forms NO+, NO and HNO (protonated NO) with the melatonin metabolite N1-acetyl-5-methoxykynuramine. J Pineal Res 2007; 43:382388.
  • 120
    Hardeland R, Poeggeler B, Pappolla MA. Mitochondrial actions of melatonin – an endeavor to identify their adaptive and cytoprotective mechanisms. Abh Sächs Akad Wiss Math-Nat Kl, Endokrinologie Pt 4 2009; 65: in press.
  • 121
    Backhaus C, Rahman H, Scheffler S et al. NO scavenging by 3-hydroxyanthranilic acid and 3-hydroxykynurenine: N-nitrosation leads via oxadiazoles to o-quinone diazides. Nitric Oxide 2008; 19:237244.
  • 122
    Krotzky M, Hardeland R. Metabolism of the melatonin metabolite N1-acetyl-N2-formyl-5-methoxykynuramine in Saccharomyces cerevisiae. Cytologia 2008; 73:123128.
  • 123
    Almeida EA, Klitzke CF, Martinez GR et al. Synthesis of internal labeled standards of melatonin and its metabolite N1-acetyl-N2-formyl-5-methoxykynuramine for their quantification using an on-line liquid chromatography-electrospray tandem mass spectrometry system. J Pineal Res 2004; 36:6471.
  • 124
    Martinez GR, Almeida EA, Klitzke CF et al. Measurement of melatonin and its metabolites: importance for the evaluation of their biological roles. Endocr 2005; 27:111118.
  • 125
    Ma X, Idle JR, Krausz KW et al. Urinary metabolites and antioxidant products of exogenous melatonin in the mouse. J Pineal Res 2006; 40:343349.
  • 126
    Makino K. 5-Hydroxykynuramine (mausamine) in the urine of mouse. Biochem Biophys Res Commun 1961; 5:481485.
  • 127
    Makino K, Joh Y, Hasegawa F. The detection of mausamine in the brain of mouse. Biochem Biophys Res Commun 1962; 6:432437.
  • 128
    Gál GM, Sherman AD. Synthesis and metabolism of L-kynurenine in rat brain. J Neurochem 1978; 30:607613.
  • 129
    Gál GM, Sherman AD. L-Kynurenine: its synthesis and possible regulatory function in brain. Neurochem Res 1980; 5:223239.
  • 130
    Johnson TD, Clarke DE. Kynuramines: their biochemistry and pharmacology. In: Quinolinic Acid and the Kynurenines. StoneTW, ed. CRC Press, Boca Raton, 1989; pp. 213226.
  • 131
    Makino K, Joh Y, Hasegawa F, Takahashi H. The precursor of 5-hydroxykynuramine. Biochim Biophys Acta 1964; 86:191194.
  • 132
    Murakami Y, Makino K. Conversion of 5-hydroxykynurenine to 5-hydroxykynuramine and 4,6-dihydroxyquinoline in mouse liver homogenate. J Biochem 1968; 63:2024.
  • 133
    Zsizsik BK, Hardeland R. Formation of kynurenic and xanthurenic acids from kynurenine and 3-hydroxykynurenine in the dinoflagellate Lingulodinium polyedrum: role of a novel, oxidative pathway. Comp Biochem Physiol 2002; 133C:383392.
  • 134
    Hardeland R. Melatonin and other tryptophan metabolites: rhythms outside the animal world and some novel, presumably universal pathways. In: Comparative Aspects of Circadian Rhythms. Fanjul-MolesML, Aguilar-RobleroR, eds. Transworld Research Network, Trivandrum, 2008; pp. 117.
  • 135
    Hardeland R. Plants – sources of melatonin. In: Botanical Medicine in Clinical Practice. WatsonRR, PreedyVR, eds. CABI, Wallingford, 2008; pp. 752760.
  • 136
    Charlton KG, Johnson TD, Maurice RW, Clarke DE. Kynuramine: high affinity for [3H]tryptamine binding sites. Eur J Pharmacol 1984; 106:661664.
  • 137
    Charlton KG, Johnson TD, Hamed AT, Clarke DE. Cardiovascular actions of kynuramine and 5-hydroxykynuramine in pithed rats. J Neural Transm 1983; 57:199211.
  • 138
    Johnson TD, Charlton KG, Clarke DE. Cardiac norepinephrine releasing action of kynuramine, an endogenous diamine derived from L-tryptophan. Life Sci 1984; 35:23032310.
  • 139
    Charlton KG, Johnson TD, Clarke DE. Vasoconstrictor and norepinephrine potentiating action of 5-hydroxykynuramine in the isolated perfused rat kidney: involvement of serotonin receptors and alpha 1-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 1984; 328:154159.
  • 140
    Balzer I, Hardeland R. Circadian variations in the effects of epinephrine, kynuramine and potential MAO inhibitors on bioluminescence of Gonyaulax. In: Chronobiology & Chronomedicine. SurowiakJ, LewandowskiMH, eds. Lang, Frankfurt/M. 1991; pp. 1622.
  • 141
    Hardeland R, Balzer I. Chronobiology of unicells: multiplicity of frequencies, non-oscillatory states, photoperiodism and effects of biogenic amines. Trends Comp Biochem Physiol 1993; 1:7187.
  • 142
    Balzer I, Hardeland R. Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra. Science 1991; 253:795797.
  • 143
    Fuhrberg B, Hardeland R. Effects of monamine oxidase inhibitors on 5-methoxyindoles in Gonyaulax polyedra. In: Metabolism and Cellular Dynamics of Indoles. HardelandR, ed. University of Göttingen, Göttingen, 1996; pp. 7780.
  • 144
    Kaumann AJ. Yohimbine and rauwolscine inhibit 5-hydroxytryptamine-induced contraction of large coronary arteries of calf through blockade of 5-HT2 receptors. Naunyn Schmiedebergs Arch Pharmacol 1983; 323:149154.
  • 145
    Charlton KG, Johnson TD, Clarke DE. Potentiation of the vasoconstriction to norepinephrine in the isolated perfused rat kidney by 5-hydroxykynuramine, an endogenous amine related to 5-hydroxytryptamine. Proc West Pharmacol Soc 1984; 27:391394.
  • 146
    Pomfret DW, Schenck KW, Fludzinski P, Cohen ML. Interaction of 5-hydroxykynurenamine, L-kynurenine and kynuramine with multiple serotonin receptors in smooth muscle. J Pharmacol Exp Ther 1987; 241:465471.
  • 147
    Watts SW, Gilbert L, Webb RC. 5-Hydroxytryptamine2B receptor mediates contraction in the mesenteric artery of mineralocorticoid hypertensive rats. Hypertension 1995; 26:10561059.
  • 148
    Pfeuffer-Friederich I, Kilbinger H, Back W. Increase by 5-hydroxykynuramine of spontaneous acetylcholine release from myenteric neurons: mediated by serotonin M receptors. Eur J Pharmacol 1987; 136:225229.
  • 149
    Fu LH, Toda N. Structure-activity relationship of 5-hydroxykynurenamine analogues in isolated dog cerebral arteries. Jpn J Pharmacol 1979; 29:789796.
  • 150
    Okuma M, Tokuyama T, Senoh S et al. Antagonism of 5-hydroxykynurenamine against serotonin action on platelet aggregation. Proc Natl Acad Sci USA 1976; 73:643645.
  • 151
    Laekeman GL, Claeys M, Vrints M, Herman AG. No evidence for a physiological role of 5-hydroxykynuramine in chicken hemostasis. Agents Actions 1985; 16:443445.
  • 152
    Iwasaki Y, Kato Y, Ohgo S et al. Effects of indoleamines and their newly identified metabolites on prolactin release in rats. Endocrinology 1978; 103:254258.
  • 153
    Makino K, Takahashi H. Action of dimethylkynurenamine on blood pressure. Science 1954; 120:544545.
  • 154
    Makino K, Takahashi H. The synthesis of dimethyl 5-hydroxykynurenamine and its action on the blood pressure of rabbit. J Biochem 1955; 42:559560.
  • 155
    Kennaway DJ, Hugel HM. Mechanims of action of melatonin within the central nervous system. Anim Reprod Sci 1992; 30:4565.
  • 156
    Kennaway DJ, Hugel HM. Melatonin binding sites: are they receptors? Mol Cell Endocrinol 1992; 88:C1C9.
  • 157
    Marangos PJ, Patel J, Hirata F et al. Inhibition of diazepam binding by tryptophan derivatives including melatonin and its brain metabolite N-acetyl-5-methoxykynurenamine. Life Sci 1981; 29:259267.
  • 158
    Kennaway DJ, Royles P, Webb H, Carbone F. Effects of protein restriction, melatonin administration, and short daylength on brain benzodiazepine receptors in prepubertal male rats. J Pineal Res 1988; 5:455467.
  • 159
    Dubocovich ML. Pharmacology and function of melatonin receptors. FASEB J 1988; 2:27652773.
  • 160
    Dubocovich ML, Shankar G, Mickel M. 2-[125I]iodomelatonin labels sites with identical pharmacological characteristics in chicken brain and chicken retina. Eur J Pharmacol 1989; 162:289299.
  • 161
    Kennaway DJ, Hugel HM, Clarke S et al. Structure-activity studies of melatonin analogues in prepubertal male rats. Aust J Biol Sci 1988; 41:393400.
  • 162
    Kennaway DJ, Royles P, Dunstan EA, Hugel HM. Prolactin response in Border-Leicester x merino ewes to administration of melatonin, melatonin analogues, a melatonin metabolite and 6-methoxybenzoxazolinone. Aust J Biol Sci 1986; 39:427433.
  • 163
    Kennaway DJ, Blake P, Webb HA. A melatonin agonist and N-acetyl-N2-formyl-5-methoxykynurenamine accelerate the reentrainment of the melatonin rhythm following a phase advance of the light-dark cycle. Brain Res 1989; 495:349354.
  • 164
    Mayo JC, Sainz RM, Tan DX et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol 2005; 165:139149.
  • 165
    Silva SO, Rodrigues MR, Ximenes VF et al. Neutrophils as a specific target for melatonin and kynuramines: effects on cytokine release. J Neuroimmunol 2004; 156:146152.
  • 166
    Silva SO, Carvalho SR, Ximenes VF et al. Melatonin and its kynurenin-like oxidation products affect the microbicidal activity of neutrophils. Microbes Infect 2006; 8:420425.
  • 167
    Entrena A, Camacho ME, Carrión MD et al. Kynurenamines as neural nitric oxide synthase inhibitors. J Med Chem 2005; 48:81748181.
  • 168
    León J, Escames G, Rodríguez MI et al. Inhibition of neuronal nitric oxide synthase activity by N1-acetyl-5-methoxykynuramine, a brain metabolite of melatonin. J Neurochem 2006; 98:20232033.
  • 169
    Tapias V, Escames G, López LC et al. Melatonin and its brain metabolite N1-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian mice. J Neurosci Res 2009 [Epub ahead of print; PMID: 19437546].
  • 170
    Hardeland R. Melatonin, mitochondrial electron flux and leakage: recent findings and resolution of contradictory results. Adv Stud Biol 2009; 1: in press.
  • 171
    Acuña-Castroviejo D, Escames G, León J et al. Mitochondrial regulation by melatonin and its metabolites. Adv Exp Med Biol 2003; 527:549557.
  • 172
    Hardeland R, Coto-Montes A, Poeggeler B. Circadian rhythms, oxidative stress and antioxidative defense mechanisms. Chronobiol Int 2003; 20:921962.
  • 173
    Onuki J, Almeida EA, Medeiros MH, Di Mascio P. Inhibition of 5-aminolevulinic acid-induced DNA damage by melatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, quercetin or resveratrol. J Pineal Res 2005; 38:107115.
  • 174
    Manda K, Ueno M, Anzai K. AFMK, a melatonin metabolite, attenuates X-ray-induced oxidative damage to DNA, proteins and lipids in mice. J Pineal Res 2007; 42:386393.
  • 175
    Manda K, Ueno M, Anzai K. Space radiation-induced inhibition of neurogenesis in the hippocampal dentate gyrus and memory impairment in mice: ameliorative potential of the melatonin metabolite, AFMK. J Pineal Res 2008; 45:430438.
  • 176
    Maharaj DS, Anoopkumar-Dukie S, Glass BD et al. The identification of the UV degradants of melatonin and their ability to scavenge free radicals. J Pineal Res 2002; 32:257261.
  • 177
    Maharaj DS, Walker RB, Glass BD, Daya S. 6-Hydroxymelatonin protects against cyanide induced oxidative stress in rat brain homogenates. J Chem Neuroanat 2003; 26:103107.
  • 178
    Nowak A, Rahman H, Heer C et al. Reactions of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK) with the tyrosine side-chain fragment, 4-ethylphenol. Redox Rep 2008; 13:102108.