• 1
    Lerner AB, Case JD, Takahashi Y et al. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 1958; 80:2587.
  • 2
    Hoffman RA, Reiter RJ. Pineal gland: influence on gonads of male hamsters. Science 1965; 148:16091611.
  • 3
    Reiter RJ. Pineal control of a seasonal reproductive rhythm in male golden hamsters exposed to natural daylight and temperature. Endocrinology 1973; 92:423430.
  • 4
    Carter DS, Goldman BD. Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): duration is the critical parameter. Endocrinology 1983; 113:12611267.
  • 5
    Moore RY. Neural control of pineal function in mammals and birds. J Neural Trans, Supp 1978; 13:4758.
  • 6
    Morgan PJ, Barrett P, Howell HE, Helliwell R. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Intl 1994; 24:101146.
  • 7
    Weaver DR, Reppert SM. Melatonin receptors are present in the ferret pars tuberalis and pars distalis, but not in brain. Endocrinology 1990; 127:26072609.
  • 8
    Morgan PJ, Lawson W, Davidson G, Howell HE. Melatonin inhibits cyclic AMP production in cultured ovine pars tuberalis cells. J Mol Endocrinol 1989; 3:R5R8.
  • 9
    Morgan PJ, Williams LM, Davidson G et al. Melatonin receptors on ovine pars tuberalis: characterization and autoradiographical localization. J Neuroendocrinol 1989; 1:14.
  • 10
    Barrett P, Choi W, Morris M, Morgan P. A role for tyrosine phosphorylation in the regulation and sensitization of adenylate cyclase by melatonin. FASEB J 2000; 14:16191628.
  • 11
    Barrett P, Messager S, Schuster C et al. Pituitary adenylate cyclase-activating polypeptide acts as a paracrine regulator of melatonin-responsive cells of the ovine pars tuberalis. Endocrinology 2002; 143:23662375.
  • 12
    Barrett P, Schuster C, Mercer JG, Morgan PJ. Sensitization: a mechanism for melatonin action in the pars tuberalis. J Neuroendocrinol 2003; 15:415421.
  • 13
    Hazlerigg DG, Gonzalez-Brito A, Lawson W et al. Prolonged exposure to melatonin leads to time-dependent sensitization of adenylate cyclase and down-regulates melatonin receptors in pars tuberalis cells from ovine pituitary. Endocrinology 1993; 132:285292.
  • 14
    Witt-Enderby PA, Masana MI, Dubocovich ML. Physiological exposure to melatonin supersensitizes the cyclic adenosine 3′,5′-monophosphate-dependent signal transduction cascade in Chinese hamster ovary cells expressing the human mt1 melatonin receptor. Endocrinology 1998; 139:30643071.
  • 15
    Dupré SM, Miedzinska K, Duval CV et al. Identification of Eya3 and TAC1 as long-day signals in the sheep pituitary. Curr Biol 2010; 20:829835.
  • 16
    Dardente H, Wyse CA, Birnie MJ et al. A molecular switch for photoperiod responsiveness in mammals. Curr Biol 2010; 20:21932198.
  • 17
    Masumoto K, Ukai-Tadenuma M, Kasukawa T et al. Acute induction of Eya3 by late-night light stimulation triggers TSHβ expression in photoperiodism. Curr Biol 2010; 20:21992206.
  • 18
    Li X, Oghi KA, Zhang J et al. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 2003; 426:247254.
  • 19
    Von GALLC, Garabette ML, Kell CA et al. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat Neurosci 2002; 5:234238.
  • 20
    Hanon EA, Lincoln GA, Fustin J et al. Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr Biol 2008; 18:11471152.
  • 21
    Dardente H, Menet JS, Poirel V et al. Melatonin induces Cry1 expression in the pars tuberalis of the rat. Mol Brain Res 2003; 114:101106.
  • 22
    Unfried C, Ansari N, Yasuo S et al. Impact of melatonin and molecular clockwork components on the expression of thyrotropin β-chain (Tshb) and the Tsh receptor in the mouse pars tuberalis. Endocrinology 2009; 150:46534662.
  • 23
    Brydon L, Roka F, Petit L et al. Dual signaling of human Mel1a melatonin receptors via G(i2), G(i3), and G(q/11) proteins. Mol Endocrinol 1999; 13:20252038.
  • 24
    Godson C, Reppert SM. The Mel(1a) melatonin receptor is coupled to parallel signal transduction pathways. Endocrinology 1997; 138:397404.
  • 25
    Messager S, Ross AW, Barrett P, Morgan PJ. Decoding photoperiodic time through Per1 and ICER gene amplitude. Proc Nat Acad Sci USA 1999; 96:99389943.
  • 26
    Messager S, Hazlerigg DG, Mercer JG, Morgan PJ. Photoperiod differentially regulates the expression of Per1 and ICER in the pars tuberalis and the suprachiasmatic nucleus of the Siberian hamster. Eur J Neurosci 2000; 12:28652870.
  • 27
    Lincoln G, Messager S, Andersson H, Hazlerigg DG. Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc Nat Acad Sci USA 2002; 99:1389013895.
  • 28
    Johnston JD, Ebling FJP, Hazlerigg DG. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus). Eur J Neurosci 2005; 21:29672974.
  • 29
    Bockers TM, Sourgens H, Wittkowski W et al. Changes in TSH-immunoreactivity in the pars tuberalis and pars distalis of the fetal rat hypophysis following maternal administration of propylthiouracil and thyroxine. Cell Tissue Res 1990; 260:403408.
  • 30
    Böckers TM. TSH expression in murine hypophyseal pars tuberalis-specific cells. Acta Anat 1997; 160:22.
  • 31
    Böckers TM, Bockmann J, Salem A et al. Initial expression of the common α-chain in hypophyseal pars tuberalis- specific cells in spontaneous recrudescent hamsters. Endocrinology 1997; 138:41014108.
  • 32
    Ono H, Hoshino Y, Yasuo S et al. Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc Nat Acad Sci USA 2008; 105:1823818242.
  • 33
    Lincoln GA, Clarke IJ. Absence of photoperiodic modulation of gonadotrophin secretion in HPD rams following chronic pulsatile infusion of GnRH. J Neuroendocrinol 1998; 10:461471.
  • 34
    Lincoln GA, Rhind SM, Pompolo S, Clarke IJ. Hypothalamic control of photoperiod-induced cycles in food intake, body weight, and metabolic hormones in rams. Am J Physiol Regul Integr Comp Physiol 2001; 281:R76R90.
  • 35
    Maywood ES, Hastings MH. Lesions of the iodomelatonin-binding sites of the mediobasal hypothalamus spare the lactotropic, but block the gonadotropic response of male Syrian hamsters to short photoperiod and to melatonin. Endocrinology 1995; 136:144153.
  • 36
    Knowles F. Ependymal secretion, especially in the hypothalamic region. J Neuro-visc Relat 1969; 31:189194.
  • 37
    Akmayev IG, Fidelina OV. Morphological aspects of the hypothalamic hypophyseal system. VI. The tanycytes: their relation to the sexual differentiation of the hypothalamus: an enzyme histochemical study. Cell Tissue Res 1976; 173:407416.
  • 38
    Dellmann HD. Histological research on the fine structure of the internal zone of the infundibulum in cattle. Acta Morphol Neerl-Scand 1961; 4:130.
  • 39
    Akmayev IG, Fidelina OV. Morphological aspects of the hypothalamic hypophyseal system. V. The tanycytes: their relation to the hypophyseal adrenocorticotrophic function. An enzyme histochemical study. Cell Tissue Res 1974; 152:403410.
  • 40
    Ciofi P, Garret M, Lapirot O et al. Brain-endocrine interactions: a microvascular route in the mediobasal hypothalamus. Endocrinology 2009; 150:55095519.
  • 41
    Ciofi P, Leroy D, Tramu G. Sexual dimorphism in the organization of the rat hypothalamic infundibular area. Neuroscience 2006; 141:17311745.
  • 42
    Prevot V, Croix D, Bouret S et al. Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 1999; 94:809819.
  • 43
    Yamamura T, Hirunagi K, Ebihara S, Yoshimura T. Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail. Endocrinology 2004; 145:42644267.
  • 44
    Kameda Y, Arai Y, Nishimaki T. Ultrastructural localization of vimentin immunoreactivity and gene expression in tanycytes and their alterations in hamsters kept under different photoperiods. Cell Tissue Res 2003; 314:251262.
  • 45
    Bolborea M, Laran-Chich MP, Rasri K et al. Melatonin controls photoperiodic changes in tanycyte vimentin and neural cell adhesion molecule expression in the Djungarian hamster (Phodopus sungorus). Endocrinology 2011, August 16 [Epub ahead of print]. doi: 101210/en2011-1039.
  • 46
    Nilaweera K, Herwig A, Bolborea M et al. Photoperiodic regulation of glycogen metabolism, glycolysis, and glutamine synthesis in tanycytes of the Siberian hamster suggests novel roles of tanycytes in hypothalamic function. Glia 2011; 59:16951705.
  • 47
    Goldsmith AR, Nicholls TJ. Thyroxine induces photorefractoriness and stimulates prolactin secretion in European starlings (Sturnus vulgaris). J Endocrinol 1984; 101:R1R3.
  • 48
    Dawson A, Goldsmith AR, Nicholls TJ. Thyroidectomy results in termination of photorefractoriness in starlings (Sturnus vulgaris) kept in long daylengths. J Reprod Fertil 1985; 74:527533.
  • 49
    Follett BK, Nicholls TJ. Influences of thyroidectomy and thyroxine replacement on photoperiodically controlled reproduction in quail. J Endocrinol 1985; 107:211221.
  • 50
    Follett BK, Nicholls TJ, Mayes CR. Thyroxine can mimic photoperiodically induced gonadal growth in Japanese quail. J Comp Physiol – B Biochem Syst Environmental Physiol 1988; 157:829835.
  • 51
    Yoshimura T, Yasuo S, Watanabe M et al. Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 2003; 426:178181.
  • 52
    Yasuo S, Watanabe M, Nakao N et al. The reciprocal switching of two thyroid hormone-activating and -inactivating enzyme genes is involved in the photoperiodic gonadal response of Japanese Quail. Endocrinology 2005; 146:25512554.
  • 53
    Viguié C, Battaglia DF, Krasa HB et al. Thyroid hormones act primarily within the brain to promote the seasonal inhibition of luteinizing hormone secretion in the ewe. Endocrinology 1999; 140:11111117.
  • 54
    Billings HJ, Viguié C, Karsch FJ et al. Temporal requirements of thyroid hormones for seasonal changes in LH secretion. Endocrinology 2002; 143:26182625.
  • 55
    Shi ZD, Barrell GK. Requirement of thyroid function for the expression of seasonal reproductive and related changes in red deer (Cervus elaphus) stags. J Reprod Fertil 1992; 94:251259.
  • 56
    Karsch FJ, Dahl GE, Hachigian TM et al. Involvement of thyroid hormones in seasonal reproduction. J Reprod Fertil Supp 1995; 49:409422.
  • 57
    Revel FG, Saboureau M, Pévet P et al. Melatonin regulates type 2 deiodinase gene expression in the Syrian hamster. Endocrinology 2006; 147:46804687.
  • 58
    Barrett P, Ebling FJP, Schuhler S et al. Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. Endocrinology 2007; 148:36083617.
  • 59
    Yasuo S, Watanabe M, Iigo M et al. Differential response of type 2 deiodinase gene expression to photoperiod between photoperiodic Fischer 344 and nonphotoperiodic Wistar rats. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1315R1319.
  • 60
    Ross AW, Helfer G, Russell L et al. Thyroid hormone signalling genes are regulated by photoperiod in the hypothalamus of F344 rats. PLoS ONE 2011; 6:e21351.
  • 61
    Hanon EA, Routledge K, Dardente H et al. Effect of photoperiod on the thyroid-stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus). J Neuroendocrinol 2010; 22:5155.
  • 62
    Lincoln GA, Andersson H, Hazlerigg DG. Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis. J Neuroendocrinol 2003; 15:390397.
  • 63
    Friesema EC, Ganguly S, Abdalla A, Manning, Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 2003; 278:4012840135.
  • 64
    Herwig A, Wilson D, Logie TJ et al. Photoperiod and acute energy deficits interact on components of the thyroid hormone system in hypothalamic tanycytes of the Siberian hamster. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1307R1315.
  • 65
    Kaiser CA, Goumaz MO, Burger AG. In vivo inhibition of the 5′-deiodinase type II in brain cortex and pituitary by reverse triiodothyronine. Endocrinology 1986; 119:762770.
  • 66
    Nakao N, Ono H, Yamamura T et al. Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 2008; 452:317322.
  • 67
    Bockmann J, Böckers TM, Winter C et al. Thyrotropin expression in hypophyseal pars tuberalis-specific cells is 3,5,3′-triiodothyronine, thyrotropin-releasing hormone, and Pit-1 independent. Endocrinology 1997; 138:10191028.
  • 68
    Guerra M, Blázquez JL, Peruzzo B et al. Cell organization of the rat pars tuberalis. Evidence for open communication between pars tuberalis cells, cerebrospinal fluid and tanycytes. Cell Tissue Res 2010; 339:359381.
  • 69
    Ross AW, Webster CA, Mercer JG et al. Photoperiodic regulation of hypothalamic retinoid signaling: association of retinoid X receptor γ with body weight. Endocrinology 2004; 145:1320.
  • 70
    Ross AW, Bell LM, Littlewood PA et al. Temporal changes in gene expression in the arcuate nucleus precede seasonal responses in adiposity and reproduction. Endocrinology 2005; 146:19401947.
  • 71
    Barrett P, Ivanova E, Graham ES et al. Photoperiodic regulation of cellular retinoic acid-binding protein 1, GPR50 and nestin in tanycytes of the third ventricle ependymal layer of the Siberian hamster. J Endocrinol 2006; 191:687698.
  • 72
    Shearer KD, Goodman TH, Ross AW et al. Photoperiodic regulation of retinoic acid signaling in the hypothalamus. J Neurochem 2010; 112:246257.
  • 73
    Reppert SM, Weaver DR, Ebisawa T et al. Cloning of a melatonin-related receptor from human pituitary. FEBS Lett 1996; 386:219224.
  • 74
    Drew JE, Barrett P, Williams LM et al. The ovine melatonin-related receptor: cloning and preliminary distribution and binding studies. J Neuroendocrinol 1998; 10:651661.
  • 75
    Conway S, Drew JE, Mowat ES et al. Chimeric melatonin and melatonin-related receptors: identification of domains and residues participating in ligand binding and receptor activation of the melatonin mt1 receptor. J Biol Chem 2000; 275:2060220609.
  • 76
    Drew JE, Barrett P, Mercer JG et al. Localization of the melatonin-related receptor in the rodent brain and peripheral tissues. J Neuroendocrinol 2001; 13:453458.
  • 77
    Wallis K, Dudazy S, Van Hogerlinden M et al. The thyroid hormone receptor α1 protein is expressed in embryonic postmitotic neurons and persists in most adult neurons. Mol Endocrinol 2010; 24:19041916.
  • 78
    Herwig A, Ross AW, Nilaweera KN et al. Hypothalamic thyroid hormone in energy balance regulation. Obes Facts 2008; 1:7179.
  • 79
    Tagami T, Yamamoto H, Moriyama K et al. The retinoid X receptor binding to the thyroid hormone receptor: relationship with cofactor binding and transcriptional activity. J Mol Endocrinol 2009; 42:415428.
  • 80
    Ross AW, Johnson CE, Bell LM et al. Divergent regulation of hypothalamic neuropeptide Y and agouti-related protein by photoperiod in F344 rats with differential food intake and growth. J Neuroendocrinol 2009; 21:610619.
  • 81
    Barrett P, Ross AW, Balik A et al. Photoperiodic regulation of histamine H3 receptor and VGF messenger ribonucleic acid in the arcuate nucleus of the Siberian hamster. Endocrinology 2005; 146:19301939.
  • 82
    Barrett P, Van Den Top M, Wilson D et al. Short photoperiod-induced decrease of histamine H3 receptors facilitates activation of hypothalamic neurons in the Siberian hamster. Endocrinology 2009; 150:36553663.
  • 83
    Revel FG, Saboureau M, Masson-Pévet M et al. KiSS-1: a likely candidate for the photoperiodic control of reproduction in seasonal breeders. Chronobiol Intl 2006; 23:277287.
  • 84
    Revel FG, Saboureau M, Masson-Pévet M et al. Kisspeptin mediates the photoperiodic control of reproduction in hamsters. Curr Biol 2006; 16:17301735.
  • 85
    Revel FG, Saboureau M, Pévet P et al. RFamide-related peptide gene is a melatonin-driven photoperiodic gene. Endocrinology 2008; 149:902912.
  • 86
    Kotani M, Detheux M, Vandenbogaerde A et al. The Metastasis Suppressor Gene KiSS-1 Encodes Kisspeptins, the Natural Ligands of the Orphan G Protein-coupled Receptor GPR54. J Biol Chem. 2001; 276:3463134636.
  • 87
    Gottsch ML, Cunningham MJ, Smith JT et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 2004; 145:40734077.
  • 88
    Ansel L, Bolborea M, Bentsen AH et al. Differential regulation of kiss1 expression by melatonin and gonadal hormones in male and female Syrian hamsters. J Biol Rhythms, 2010; 25:8191.
  • 89
    Desroziers E, Mikkelsen J, Simonneaux V et al. Mapping of kisspeptin fibres in the brain of the pro-oestrous rat. J Neuroendocrinol 2010; 22:11011112.
  • 90
    Magee C, Foradori CD, Bruemmer E et al. Biological and anatomical evidence for kisspeptin regulation of the hypothalamic-pituitary-gonadal axis of estrous horse mares. Endocrinology 2009; 150:28132821.
  • 91
    Robertson JL, Clifton DK, De La Iglesia HO et al. Circadian regulation of Kiss1 neurons: implications for timing the preovulatory gonadotropin-releasing hormone/luteinizing hormone surge. Endocrinology 2009; 150:36643671.
  • 92
    Smith JT, Popa SM, Clifton DK et al. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 2006; 26:66876694.
  • 93
    Smith JT, Cunningham MJ, Rissman EF et al. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 2005; 146:36863692.
  • 94
    Smith JT, Dungan HM, Stoll EA et al. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 2005; 146:29762984.
  • 95
    Smith JT, Coolen LM, Kriegsfeld LJ et al. Variation in kisspeptin and RFamide-related peptide (RFRP) expression and terminal connections to gonadotropin-releasing hormone neurons in the brain: a novel medium for seasonal breeding in the sheep. Endocrinology 2008; 149:57705782.
  • 96
    Greives TJ, Mason AO, Scotti M-AL et al. Environmental control of kisspeptin: implications for seasonal reproduction. Endocrinology 2007; 148:11581166.
  • 97
    Tsutsui K, Saigoh E, Ukena K et al. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Comm 2000; 275:661667.
  • 98
    Anderson GM, Relf H, Rizwan MZ, Evans JJ. Central and peripheral effects of RFamide-related peptide-3 on luteinizing hormone and prolactin secretion in rats. Endocrinology 2009; 150:18341840.
  • 99
    Hinuma S, Shintani Y, Fukusumi S et al. New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat Cell Biol 2000; 2:703708.
  • 100
    Yano T, Iijima N, Kakihara K et al. Localization and neuronal response of RFamide related peptides in the rat central nervous system. Brain Res 2003; 982:156167.
  • 101
    Mason AO, Duffy S, Zhao S et al. Photoperiod and reproductive condition are associated with changes in RFamide-Related Peptide (RFRP) expression in Syrian hamsters (Mesocricetus auratus). J Biol Rhythms 2010; 25:176185.
  • 102
    Schwartz MW, Woods SC, Porte D Jr, et al. Central nervous system control of food intake. Nature 2000; 404:661671.
  • 103
    Mercer JG, Lawrence CB, Beck B et al. Hypothalamic NPY and prepro-NPY mRNA in Djungarian hamsters: effects of food deprivation and photoperiod. Am J Physiol Regul Integr Comp Physiol 1995; 269:R1099R1106.
  • 104
    Mercer JG, Moar KM, Ross AW et al. Photoperiod regulates arcuate nucleus POMC, AGRP, and leptin receptor mRNA in Siberian hamster hypothalamus. Am J Physiol Regul Integr Comp Physiol 2000; 278:R271R281.
  • 105
    Khorooshi R, Helwig M, Werckenthin A et al. Seasonal regulation of cocaine- and amphetamine-regulated transcript in the arcuate nucleus of Djungarian hamster (Phodopus sungorus). Gen Comp Endocrinol 2008; 157:142147.
  • 106
    Mercer JG, Ellis C, Moar KM et al. Early regulation of hypothalamic arcuate nucleus CART gene expression by short photoperiod in the Siberian hamster. Reg Pept 2003; 111:129136.
  • 107
    Archer ZA, Findlay PA, Mcmillen SR et al. Effects of nutritional status and gonadal steroids on expression of appetite-regulatory genes in the hypothalamic arcuate nucleus of sheep. J Endocrinol 2004; 182:409419.
  • 108
    Adam CL, Moar KM, Logie TJ et al. Photoperiod regulates growth, puberty and hypothalamic neuropeptide and receptor gene expression in female Siberian hamsters. Endocrinology 2000; 141:43494356.
  • 109
    Jethwa PH, Warner A, Nilaweera KN et al. VGF-derived peptide, TLQP-21, regulates food intake and body weight in Siberian hamsters. Endocrinology 2007; 148:40444055.
  • 110
    Dupré S. Encoding and decoding photoperiod in the mammalian pars tuberalis. Neuroendocrinology 2011, July 22 [Epub ahead of print]. doi:10.1159/000328971.
  • 111
    Reiter RJ, Tan DX, Fuentes-Broto L. Melatonin: a multitasking molecule. Prog Brain Res 2010; 181:127151.