Cytoplasmic Tails of SialT2 and GalNAcT Impose Their Respective Proximal and Distal Golgi Localization

Authors

  • Andrea S. Uliana,

    1. Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
    Search for more papers by this author
  • Claudio G. Giraudo,

    1. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
    Search for more papers by this author
  • Hugo J. F. Maccioni

    Corresponding author
    1. Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
    Search for more papers by this author

Hugo J. F. Maccioni, maccioni@dqb.fcq.unc.edu.ar

Abstract

Complex glycolipid synthesis is catalyzed by different glycosyltransferases resident of the Golgi complex. Most of them are type II membrane proteins comprising a lumenal, C-terminal domain linked to an N-terminal domain (Ntd) constituted by a short cytoplasmic tail (ct), a transmembrane, and a lumenal stem regions. They concentrate selectively in different sub-Golgi compartments, in an overlapped manner, acting in succession in the addition of sugars to acceptor glycolipids. The Ntds are sufficient to localize glycosyltransferases in the Golgi complex, but it is not clear whether they also confer selective concentration in sub-Golgi compartments. Here, we studied whether the Ntd of SialT2, localized in the proximal Golgi, and the one of GalNAcT, a trans/TGN Golgi-concentrated enzyme, concentrate reporter proteins in the corresponding sub-Golgi compartment. The sub-Golgi concentration of the Ntds fused to spectral variants of the GFP was determined in CHO-K1 cells from their behavior upon addition of brefeldin A. Fluorescence microscopy and subcellular fractionation showed that the SialT2 Ntd concentrates in a proximal sub-Golgi compartment – and that of GalNAcT in TGN elements. Exchanging the transmembrane region and the cts of SialT2 and GalNAcT indicates that information for proximal or distal Golgi concentration is associated with the cts.

Ancillary