SEARCH

SEARCH BY CITATION

Keywords:

  • egress;
  • herpesvirus;
  • HSV-1;
  • intracellular transport;
  • large cargo;
  • PKD;
  • serine-threonine protein kinase;
  • trans Golgi network;
  • virions

The biosynthetic pathway carries cargos from the endoplasmic reticulum (ER) to the trans Golgi network (TGN) via a typical passage through the Golgi. Interestingly, large particles such as procollagen, chylomicrons and some viruses all reach the TGN by atypical routes. Given this dichotomy, we anticipated that such cargos might rely on non-classical machineries downstream of the TGN. Using Herpes simplex virus type 1 (HSV-1) as a model and a synchronized infection protocol that focuses on TGN to plasma membrane transport, the present study revealed the surprising implication of the cellular serine-threonine protein kinase D in HSV-1 egress. These findings, confirmed by a variety of complementary means [pharmacological inhibitors, dominant negative mutant, RNA interference and electron microscopy (EM)], identify one of possibly several cellular factors that modulate the egress of viruses transiting at the TGN. Moreover, the involvement of this kinase, previously known to regulate the transport of small basolateral cargos, highlights the trafficking of both small and exceptionally large entities by a common machinery downstream of the TGN, in sharp contrast to earlier steps of transport. Conceptually, this indicates the TGN is not only a sorting station from which cargos can depart towards different destinations but also a meeting point where conventional and unconventional routes can meet along the biosynthetic pathway. Lastly, given the apical release of HSV-1 in neurons, it opens up the possibility that this kinase might regulate some apical sorting.