Hitchhiking of Cu/Zn Superoxide Dismutase to Peroxisomes – Evidence for a Natural Piggyback Import Mechanism in Mammals


Markus Islinger, Markus.Islinger@urz.uni-heidelberg.de


Most newly synthesized peroxisomal proteins are imported in a receptor-mediated fashion, depending on the interaction of a peroxisomal targeting signal (PTS) with its cognate targeting receptor Pex5 or Pex7 located in the cytoplasm. Apart from this classic mechanism, heterologous protein complexes that have been proposed more than a decade ago are also to be imported into peroxisomes. However, it remains still unclear if this so-called piggyback import is of physiological relevance in mammals. Here, we show that Cu/Zn superoxide dismutase 1 (SOD1), an enzyme without an endogenous PTS, is targeted to peroxisomes using its physiological interaction partner ‘copper chaperone of SOD1’ (CCS) as a shuttle. Both proteins have been identified as peroxisomal constituents by 2D-liquid chromatography mass spectrometry of isolated rat liver peroxisomes. Yet, while a major fraction of CCS was imported into peroxisomes in a PTS1-dependent fashion in CHO cells, overexpressed SOD1 remained in the cytoplasm. However, increasing the concentrations of both CCS and SOD1 led to an enrichment of SOD1 in peroxisomes. In contrast, CCS-mediated SOD1 import into peroxisomes was abolished by deletion of the SOD domain of CCS, which is required for heterodimer formation. SOD1/CCS co-import is the first demonstration of a physiologically relevant piggyback import into mammalian peroxisomes.