• 1
    Markham JE, Li J, Cahoon EB, Jaworski JG. Plant sphingolipids: separation and identification of major sphingolipid classes from leaves. J Biol Chem 2006;281:2268422694.
  • 2
    Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 2003; 1632:115.
  • 3
    Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ. Lipid rafts in higher plant cells: purification and characterization of TX100-insoluble micro-domains from tobacco plasma membrane. J Biol Chem 2004;279:3627736286.
  • 4
    Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 2005;137:104116.
  • 5
    Laloi M, Perret AM, Chatre L, Melser S, Cantrel C, Vaultier MN, Zachowski A, Bathany K, Schmitter JM, Vallet M, Lessire R, Hartmann MA, Moreau P. Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 2007;143:461472.
  • 6
    Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB. The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. Plant Cell 2006;18:35763593.
  • 7
    Dietrich CR, Han G, Chen M, Berg RH, Dunn TM, Cahoon EB. Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. Plant J. 2008;54:284298.
  • 8
    Rahier A, Schmitt P, Huss B, Benveniste P, Pommer EH. Chemical structure activity relationships of the inhibition of sterol biosynthesis by N-substituted morpholines in higher plant cells. Pestic Biochem Physiol 1986;25:112124.
  • 9
    Hartmann MA, Perret AM, Carde JP, Cassagne C, Moreau P. Inhibition of the sterol pathway in leek seedlings impairs phosphatidylserine and glucosylceramide synthesis but triggers an accumulation of triacylglycerols. Biochim Biophys Acta 2002;1583:285296.
  • 10
    Zheng H, Rowland O, Kunst L. Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant cell 2005; 17:14671481.
  • 11
    Eisenkolb M, Zenzmaier C, Leitner E, Schneiter R. A specific structural requirement for ergosterol in long-chain fatty acid synthesis mutants important for maintaining raft domains in yeast. Mol Biol Cell 2002;13:44144428.
  • 12
    Gaigg B, Timischl B, Corbino L, Schneiter R. Synthesis of sphingolipids with very long chain fatty acids but not ergosterol is required for routing of newly synthesized plasma membrane ATPase to the cell surface of yeast. J Biol Chem 2005;280:2251522522.
  • 13
    Sprong H, Degroote S, Claessens T, Van Drunen J, Oorschot V, Westerink BH, Hirabayashi Y, Klumperman J, Van Der Sluijs P, Van Meer G. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J Cell Biol 2001;155:369380.
  • 14
    Futerman AH, Pagano RE. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J 1991;280:295302.
  • 15
    Kohyama-Koganeya A, Sasamura T, Oshima E, Suzuki E, Nishihara S, Ueda R, Hirabayashi Y. Drosophila glucosylceramide synthase: a negative regulator of cell death mediated by proapoptotic factors. J Biol Chem 2004;279:3599536002.
  • 16
    Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J 2008;56:169179.
  • 17
    Men S, Boutté Y, Ikeda Y, Li X, Palme K, Stierhof YD, Hartmann MA, Moritz T, Grebe M. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 2008;10:237244.
  • 18
    Chatre L, Brandizzi F, Hocquellet A, Hawes C, Moreau P. Sec22 and Memb11 are v-SNAREs of the anterograde endoplasmic reticulum-Golgi pathway in tobacco leaf epidermal cells. Plant Physiol 2005;139:12441254.
  • 19
    Asano N. Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 2003;13:93R104R.
  • 20
    Inoguchi J, Radin NS. Preparation of the active isomer of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol , inhibitor of murine glucocerebroside synthetase. J Lipid Res 1987;28:565571.
  • 21
    Paul P, Kamisaka Y, Marks DL, Pagano RE. Purification and characterization of UDP-glucose:ceramide glucosyltransferase from rat liver Golgi membranes. J Biol Chem 1996;271:22872293.
  • 22
    Hillig I, Warnecke D, Heinz E. An inhibitor of glucosylceramide synthase inhibits the human enzyme, but not enzymes from other organisms. Biosci Biotechnol Biochem 2005;69:17821785.
  • 23
    Heape AM, Juguelin H, Boiron F, Cassagne C. Improved one dimensional thin layer chromatographic technique for polar lipids. J Chromatogr 1985;332:391395.
  • 24
    Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin JP, Miquel M, Tellier F, Domergue F, Markham JE, Beaudoin F, Napier JA, Faure JD. The very-long-chain hydroxy fatty acy-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci U S A 2008;105:1472714731.
  • 25
    Lefebvre B, Batoko H, Duby G, Boutry M. Targeting of a Nicotiana plumbaginifolia H+ - ATPase to the plasma membrane is not by default and requires cytosolic structural determinants. Plant Cell 2004;16:17721789.
  • 26
    Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH. Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 2004;29:4965.
  • 27
    Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C. Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 2002;14:12931309.
  • 28
    Rosenwald AG, Machamer CE, Pagano RE. Effects of a sphingolipid synthesis inhibitor on membrane transport through the secretory pathway. Biochemistry 1992;31:35813590.
  • 29
    Haasen D, Köhler C, Neuhaus G, Merkle T. Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana. Plant J 1999;20: 695705.
  • 30
    Hanton SL, Chatre L, Renna L, Matheson LA, Brandizzi F. De novo formation of plant endoplasmic reticulum export sites is membrane cargo induced and signal mediated. Plant Physiol 2007;143:16401650.
  • 31
    Langhans M, Robinson DG. 1-Butanol targets the Golgi apparatus in tobacco BY-2 cells, but in a different way to brefeldin A. J Exp Bot 2007;58:34393447.
  • 32
    Lee MC, Hamamoto S, Schekman R. Ceramide biosynthesis is required for the formation of the oligomeric H+ - ATPase Pma1p in the yeast endoplasmic reticulum. J Biol Chem 2002;277: 2239522401.
  • 33
    Halter D, Neumann S, Van Dijk SM, Wolthoorn J, De Mazière AM, Vieira OV, Mattjus P, Klumperman J, Van Meer G, Sprong H. Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 2007;179:101115.
  • 34
    West G, Viitanen L, Alm C, Mattjus P, Salminen TA, Edqvist J. Identification of a glycosphingolipid transfer protein GLTP1 in Arabidopsis thaliana. FEBS J 2008;275:34213437.
  • 35
    Batoko H, Zheng HQ, Hawes C, Moore I. A rab1 GTPase is required for transport between the endoplasmic reticulum and golgi apparatus and for normal golgi movement in plants. Plant Cell 2000;12:22012218.
  • 36
    Brandizzi F, Frangne N, Marc-Martin S, Hawes C, Neuhaus JM, Paris N. The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain. Plant Cell 2002; 14:10771092.
  • 37
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1986;72:248254.
  • 38
    Nakayama M, Kojima M, Ohnishi M, Ito S. Enzymatic formation of plant cerebroside: properties of UDP-glucose: ceramide glucosyltransferase in radish seedlings. Biosci Biotechnol Biochem 1995;59:18821886.
  • 39
    Lynch DV, Criss AK, Lahoczky JL, Bui VT. Ceramide glucosylation in bean hypocotyls microsomes: evidence that steryl glucoside serves as glucose donor. Arch Biochem Biosphys 1997; 340:311316.
  • 40
    Hillig I, Leipelt M, Ott C, Zahringer U, Warnecke D, Heinz E. Formation of glucosylceramide and sterol glucoside by a UDP-glucose-dependent glucosyl-ceramide synthase from cotton expressed in Pichia pastoris. FEBS Lett 2003;553:365369.
  • 41
    Macala LJ, Yo RK, Ando S. Analysis of brain lipids by high performance TLC and densitometry. J Lipid Res 1983;24: 12431250.
  • 42
    Van Echten-Deckert G. Sphingolipid extraction and analysis by thin-layer chromatography. Meth Enzymol. 2000;312:6479.
  • 43
    Lovato MA, Hart EA, Segura MJ, Giner JL, Matsuda SP. Functional cloning of an Arabidopsis thaliana cDNA encoding cycloeucalenol cycloisomerase. J Biol Chem 2000; 275:1339413397.