Contributions of carbon cycle uncertainty to future climate projection spread
Article first published online: 15 JAN 2009
DOI: 10.1111/j.1600-0889.2009.00414.x
© 2009 NERC - Centre for Ecology and Hydrology Journal compilation © 2009 Blackwell Munksgaard
Additional Information
How to Cite
HUNTINGFORD, C., LOWE, J. A., BOOTH, B. B. B., JONES, C. D., HARRIS, G. R., GOHAR, L. K. and MEIR, P. (2009), Contributions of carbon cycle uncertainty to future climate projection spread. Tellus B, 61: 355–360. doi: 10.1111/j.1600-0889.2009.00414.x
Publication History
- Issue published online: 27 FEB 2009
- Article first published online: 15 JAN 2009
- (Manuscript received 7 June 2008; in final form 15 December 2008)
- Abstract
- Article
- References
- Cited By
ABSTRACT
We have characterized the relative contributions to uncertainty in predictions of global warming amount by year 2100 in the C4MIP model ensemble (Friedlingstein et al., 2006) due to both carbon cycle process uncertainty and uncertainty in the physical climate properties of the Earth system. We find carbon cycle uncertainty to be important. On average the spread in transient climate response is around 40% of that due to the more frequently debated uncertainties in equilibrium climate sensitivity and global heat capacity.
This result is derived by characterizing the influence of different parameters in a global climate-carbon cycle ‘box’ model that has been calibrated against the 11 General Circulation models (GCMs) and Earth system Models of Intermediate Complexity (EMICs) in the C4MIP ensemble; a collection of current state-of-the-art climate models that include an explicit representation of the global carbon cycle.
1600-0889/asset/olbannerleft.gif?v=1&s=bbf1f0989b78116a7edf23ba1fbc3536882b4ec1)
1600-0889/asset/olbannerright.gif?v=1&s=93dc33851273bc56d1f7474fbfead34c3c1e3b44)
