SEARCH

SEARCH BY CITATION

ABSTRACT

Recent increases in fire and insect disturbances have contributed to a transition of Canada's managed forest carbon balance from sink to source. Further increases in area burned could contribute positive feedback to climate change. We made probabilistic forecasts of the recovery of C sinks in Canada's managed forest between 2010 and 2100 under two assumptions about future area burned by wildfire: (1) no increase relative to levels observed in the last half of the 20th century and (2) linear increases by a factor of two or four (depending on region) from 2010 to 2100. Recovery of strong C sinks in Canada's managed forest will be delayed until at least the 2030s because of insect outbreaks, even if predicted increases in area annually burned do not occur. After 2050, our simulations project an annual probability of a sink near 70% with no increase in area burned and 35% with increasing area burned. All simulations project a cumulative C source from 2010–2100, even if annual area burned does not increase. If the sink strength of terrestrial ecosystems is reduced because of increasing natural disturbances, then it will become more difficult to achieve global atmospheric CO2 stabilization targets.