SEARCH

SEARCH BY CITATION

ABSTRACT

The δ13C value of terrestrial CO2 fluxes (δbio) provides important information for inverse models of CO2 sources and sinks as well as for studies of vegetation physiology, C3 and C4 vegetation fluxes, and ecosystem carbon residence times. From 2002–2009, we measured atmospheric CO2 concentration and δ13C–CO2 at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed δbio weekly. This region has a fine-scale mix of crops (primarily C3 winter wheat) and C4 pasture grasses. δbio had a large and consistent seasonal cycle of 6–8‰. Ensemble monthly mean δbio ranged from −25.8 ± 0.4‰ (±SE) in March to −20.1 ± 0.4‰ in July. Thus, C3 vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil δ13C values were about –15‰, indicating that historically the region was dominated by C4 vegetation and had more positive δbio values. Based on a land-surface model, isofluxes (δbio× NEE) in this region have large seasonal amplitude because δbio and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in δbio and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved 13CO2 and CO2 fluxes.