• 1
    Beagley K, Timms P: Chlamydial trachomatis infection: incidence, health costs and prospects for vaccine development. J Reprod Immunol 2000; 48:4768.
  • 2
    Cohen C, Brunham R: Pathogenesis of Chlamydia induced pelvic inflammatory disease. Sex Transm Infect 1999; 75:2124.
  • 3
    Mardh P-A: Tubal factor infertility, with special regard to chlamydial salpingitis. Curr Opin Infect Dis 2004; 17:4952.
  • 4
    Gonzales G, Munoz C, Suchez R, Henkel R, Gallegos-Avila G, Diaz-Gutierrez O, Vill P, Kortebani G, Mazzolli A, Bustos-Obregon E: Update on the impact of Chlamydia trachomatis infection on male fertility. Andrologia 2004; 36:123.
  • 5
    Hillis SD, Owens LM, Marchbanks PA, Amsterdam LF, Mac Kenzie WR: Recurrent chlamydial infections increase the risks of hospitalization for ectopic pregnancy and pelvic inflammatory disease. Am J Obstet Gynecol 1997; 176:103107.
  • 6
    Eng T, Butler W: Confronting Sexually Transmitted Diseases: The Hidden Epidemic. Washington DC, National Academy Press, 1997.
  • 7
    CDC: Centres for Disease Control and Prevention. Sexually Transmitted Disease Surveillance. Atlanta, GA, Department of Health and Human Services, 2007.
  • 8
    Brunham RC, Rekart ML: Considerations on Chlamydia trachomatis disease expression. FEMS Immunol Med Microbiol 2009; 55:162166.
  • 9
    Fine D, Dicker L, Mosure D, Berman S: Increasing Chlamydia positivity in women screened in family planning clinics: do we know why? Sex Transm Dis 2008; 35:4752.
  • 10
    Walleser S, Salkeld G, Donovan B: The cost effectiveness of screening for genital Chlamydia trachomatis infection in Australia. Sex Health 2006; 3:225234.
  • 11
    Honey E, Augood C, Templeton A, Russell I, Paavonen J, Mardh P-A, Stary A, Stray-Pedersen B: Cost effectiveness of screening for Chlamydia trachomatis: a review of published studies. Sex Transm Infect 2002; 78:406412.
  • 12
    Brunham RC, Rey-Ladino J: Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 2005; 5:149161.
  • 13
    Cunningham KA, Beagley KW: Male genital tract chlamydial infection: implications for pathology and infertility. Biol Reprod 2008; 79:180189.
  • 14
    Krause W, Bohring C: Male infertility and genital chlamydial infection: victim or perpetrator? Andrologia 2003; 35:209216.
  • 15
    Vigil P, Morales P, Tapia A, Riquelme R, Salgado A: Chlamydia trachomatis infection in male partners of infertile couples: incidence and sperm function. Andrologia 2002; 34:155161.
  • 16
    Zervomanolakis I, Ott W, Hadziomerovic D, Mattle V, Seeber B, Virgolini I, Heute D, Kissler S, Leyendecker G, Wildt L: Physiology of upward transport in the human female genital tract. Ann NY Acad Sci 2007; 1101:120.
  • 17
    Kadanali S, Varoglu E, Komec D, Uslu H: Evaluation of active and passive transport mechanisms in genital tracts of IUD-bearing women with radionuclide hysterosalpingoscintigraphy. Contraception 2001; 63:4145.
  • 18
    Stagg AJ, Tuffrey M, Woods C, Wunderink E, Knight SC: Protection against ascending infection of the genital tract by Chlamydia trachomatis is associated with recruitment of major histocompatibility complex class II antigen-presenting cells into uterine tissue. Infect Immun 1998; 66:35353544.
  • 19
    Morrison SG, Morrison RP: In situ analysis of the evolution of the primary immune response in murine Chlamydia trachomatis genital tract infection. Infect Immun 2000; 68:28702879.
  • 20
    Rank RG, Bowlin AK, Kelly KA: Characterization of lymphocyte response in the female genital tract during ascending chlamydial genital infection in the guinea pig model. Infect Immun 2000; 68:52935298.
  • 21
    Kelly KA, Walker JC, Jameel SH, Gray HL, Rank RG: Differential regulation of CD4 lymphocyte recruitment between the upper and lower regions of the genital tract during Chlamydia trachomatis infection. Infect Immun 2000; 68:15191528.
  • 22
    Kelly K, Rank R: Identification of homing receptors that mediate the recruitment of CD4 T cells to the genital tract following intravaginal infection with Chlamydia trachomatis. Infect Immun 1997; 65:51985208.
  • 23
    Maxion HK, Kelly KA: Chemokine expression patterns differ within anatomically distinct regions of the genital tract during Chlamydia trachomatis infection. Infect Immun 2002; 70:15381546.
  • 24
    Carey AJ, Cunningham KA, Hafner LM, Timms P, Beagley KW: Effects of inoculating dose on the kinetics of Chlamydia muridarum genital infection in female mice. Immunol Cell Biol 2009; 87:337343.
  • 25
    Darville T, Andrews C Jr, Laffoon K, Shymasani W, Kishen L, Rank R: Mouse strain-dependent variation in the course and outcome of chlamydial genital tract infection is associated with differences in host response. Infect Immun 1997; 65:30653073.
  • 26
    Maxion HK, Liu W, Chang M-H, Kelly KA: The infecting dose of Chlamydia muridarum modulates the innate immune response and ascending infection. Infect Immun 2004; 72:63306340.
  • 27
    Cotter T, Miranpuri G, Ramsey K, Poulsen C, Byrne G: Reactivation of chlamydial genital tract infection in mice. Infect Immun 1997; 65:20672073.
  • 28
    Rank RG, Bowlin AK, Reed RL, Darville T: Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose. Infect Immun 2003; 71:61486154.
  • 29
    Kelly K: Cellular immunity and Chlamydia genital infection: induction, recruitment, and effector mechanisms. Int Rev Immunol 2003; 22:241.
  • 30
    Brunham RC, Kimani J, Bwayo J, Maitha G, Maclean I, Yang C, Shen C, Roman S, Nagelkerke NJ, Cheang M, Plummer FA: The epidemiology of Chlamydia trachomatis within a sexually transmitted diseases core group. J Infect Dis 1996; 173:950956.
  • 31
    Witkin SS, Linhares I, Giraldo P, Jeremias J, Ledger WJ: Individual immunity and susceptibility to female genital tract infection. Am J Obstet Gynecol 2000; 183:252256.
  • 32
    Golden MR, Schillinger JA, Markowitz L, St Louis ME: Duration of untreated genital infections with Chlamydia trachomatis: a review of the literature. Sex Transm Dis 2000; 27:329337.
  • 33
    Brunham RC, Pourbohloul B, Mak S, White R, Rekart ML: The unexpected impact of a Chlamydia trachomatis infection control program on susceptibility to reinfection. J Infect Dis 2005; 192:18361844.
  • 34
    Su H, Caldwell H: CD4+ T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract. Infect Immun 1995; 63:33023308.
  • 35
    Morrison SG, Morrison RP: A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. J Immunol 2005; 175:75367542.
  • 36
    Igietseme JU, Magee DM, Williams DM, Rank RG: Role for CD8+ T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Infect Immun 1994; 62:51955197.
  • 37
    Agrawal T, Vats V, Salhan S, Mittal A: The mucosal immune response to Chlamydia trachomatis infection of the reproductive tract in women. J Reprod Immunol 2009; 4:4.
  • 38
    Barteneva N, Theodor I, Peterson E, De La Maza L: Role of neutrophils in controlling early stages of a Chlamydia trachomatis infection. Infect Immun 1996; 64:48304833.
  • 39
    Zhang D, Yang X, Lu H, Zhong G, Brunham RC: Immunity to Chlamydia trachomatis mouse pneumonitis induced by vaccination with live organisms correlates with early granulocyte-macrophage colony-stimulating factor and interleukin-12 production and with dendritic cell-like maturation. Infect Immun 1999; 67:16061613.
  • 40
    Ficarra M, Ibana JS, Poretta C, Ma L, Myers L, Taylor SN, Greene S, Smith B, Hagensee M, Martin DH, Quayle AJ: A distinct cellular profile is seen in the human endocervix during Chlamydia trachomatis infection. Am J Reprod Immunol 2008; 60:415425.
  • 41
    Agrawal T, Vats V, Wallace PK, Singh A, Salhan S, Mittal A: Recruitment of myeloid and plasmacytoid dendritic cells in cervical mucosa during Chlamydia trachomatis infection. Clin Microbiol Infect 2009; 15:5059.
  • 42
    Hvid M, Baczynska A, Deleuran B, Fedder J, Knudsen HJ, Christiansen G, Birkelund S: Interleukin-1 is the initiator of fallopian tube destruction during Chlamydia trachomatis infection. Cell Microbiol 2007; 9:27952803.
  • 43
    Rasmussen SJ, Eckmann L, Quayle AJ, Shen L, Zhang Y-X, Anderson DJ, Fierer J, Stephens RS, Kagnoff MF: Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J Clin Invest 1997; 99:7787.
  • 44
    Tseng C-TK, Rank RG: Role of NK cells in early host response to chlamydial genital infection. Infect Immun 1998; 66:58675875.
  • 45
    Stephens RS: The cellular paradigm of chlamydial pathogenesis. Trends Microbiol 2003; 11:4451.
  • 46
    Darville T, O’Neill JM, Andrews CW Jr, Nagarajan UM, Stahl L, Ojcius DM: Toll-like receptor-2, but not toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J Immunol 2003; 171:61876197.
  • 47
    Brunham RC, Peeling RW: Chlamydia trachomatis antigens: role in immunity and pathogenesis. Infect Agents Dis 1994; 3:218233.
  • 48
    Kinnunen A, Paavonen J, Surcel HM: Heat shock protein 60 specific T-cell response in chlamydial infections. Scand J Immunol 2001; 54:7681.
  • 49
    Patton DL, Sweeney YT, Kuo CC: Demonstration of delayed hypersensitivity in Chlamydia trachomatis salpingitis in monkeys: a pathogenic mechanism of tubal damage. J Infect Dis 1994; 169:680683.
  • 50
    Watkins NG, Hadlow WJ, Moos AB, Caldwell HD: Ocular delayed hypersensitivity: a pathogenetic mechanism of chlamydial-conjunctivitis in guinea pigs. Proc Natl Acad Sci USA 1986; 83:74807484.
  • 51
    Taylor H, Johnson S, Schachter J, Caldwell H, Prendergast R: Pathogenesis of trachoma: the stimulus for inflammation. J Immunol 1987; 138:30233027.
  • 52
    Kinnunen A, Molander P, Laurila A, Rantala I, Morrison R, Lehtinen M, Karttunen R, Tiitinen A, Paavonen J, Surcel H-M: Chlamydia trachomatis reactive T lymphocytes from upper genital tract tissue specimens. Hum Reprod 2000; 15:14841489.
  • 53
    Lichtenwalner AB, Patton DL, Van Voorhis WC, Sweeney YTC, Kuo C-C: Heat shock protein 60 is the major antigen which stimulates delayed-type hypersensitivity reaction in the macaque model of Chlamydia trachomatis Salpingitis. Infect Immun 2004; 72:11591161.
  • 54
    Peeling RW, Kimani J, Plummer F, Maclean I, Cheang M, Bwayo J, Brunham RC: Antibody to chlamydial hsp60 predicts an increased risk for chlamydial pelvic inflammatory disease. J Infect Dis 1997; 175:11531158.
  • 55
    Peeling RW, Patton DL, Cosgrove Sweeney YT, Cheang MS, Lichtenwalner AB, Brunham RC, Stamm WE: Antibody response to the chlamydial heat-shock protein 60 in an experimental model of chronic pelvic inflammatory disease in monkeys (Macaca nemestrina). J Infect Dis 1999; 180:774779.
  • 56
    Eckert LO, Hawes SE, Wolner-Hanssen P, Money DM, Peeling RW, Brunham RC, Stevens CE, Eschenbach DA, Stamm WE: Prevalence and correlates of antibody to chlamydial heat shock protein in women attending sexually transmitted disease clinics and women with confirmed pelvic inflammatory disease. J Infect Dis 1997; 175:14531458.
  • 57
    Ault KA, Statland BD, King MM, Dozier DI, Joachims ML, Gunter J: Antibodies to the chlamydial 60 kilodalton heat shock protein in women with tubal factor infertility. Infect Dis Obstet Gynecol 1998; 6:163167.
  • 58
    Zhao H, Li H: Immunohistochemical analysis of TNF-alpha and HSP-60 in women with tubal factor infertility associated with Chlamydia trachomatis. J Huazhong Univ Sci Technolog Med Sci 2004; 24:630632.
  • 59
    Yi Y, Yang X, Brunham RC: Autoimmunity to heat shock protein 60 and antigen-specific production of interleukin-10. Infect Immun 1997; 65:16691674.
  • 60
    Campanella C, Marino Gammazza A, Mularoni L, Cappello F, Zummo G, Di Felice V: A comparative analysis of the products of GROEL-1 gene from Chlamydia trachomatis serovar D and the HSP60 var1 transcript from Homo sapiens suggests a possible autoimmune response. Int J Immunogenet 2009; 36:7378.
  • 61
    Adimora Adaora A: Treatment of uncomplicated genital Chlamydia trachomatis infections in adults. Clin Infect Dis 2002; 35:S183S186.
  • 62
    Horner P: The case for further treatment studies of uncomplicated genital Chlamydia trachomatis infection. Sex Transm Infect 2006; 82:340343.
  • 63
    Jones RB, Van der Pol B, Martin DH, Shepard MK: Partial characterization of Chlamydia trachomatis isolates resistant to multiple antibiotics. J Infect Dis 1990; 162:13091315.
  • 64
    Rice RJ, Bhullar V, Mitchell SH, Bullard J, Knapp JS: Susceptibilities of Chlamydia trachomatis isolates causing uncomplicated female genital tract infections and pelvic inflammatory disease. Antimicrob Agents Chemother 1995; 39:760762.
  • 65
    Somani J, Bhullar VB, Workowski KA, Farshy CE, Black CM: Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure. J Infect Dis 2000; 181:14211427.
  • 66
    Katz B, Fortenberry D, Orr D: Factors affecting chlamydial persistence or recurrence one and three months after treatment. In Chlamydia Infections: Proceedings of the Ninth International Symposium on Human Chlamydial Infections, RSStephens, GChristiansen, ByrneGl, ClarkeLN, GraystonJT, RankRG, RidgwayGL, SaikkuP, SchachterJ, StammWE (ed). Napa, CA, Berkeley, CA, Berkeley University Press, 1998, pp 3538.
  • 67
    Brunham RC, Rekart ML: The arrested immunity hypothesis and the epidemiology of Chlamydia control. Sex Transm Dis 2008; 35:5354.
  • 68
    De La Maza MA, De La Maza LM: A new computer model for estimating the impact of vaccination protocols and its application to the study of Chlamydia trachomatis genital infections. Vaccine 1995; 13:119127.
  • 69
    Gray Richard T, Beagley Kenneth W, Timms P, Wilson David P: Modeling the impact of potential vaccines on epidemics of sexually transmitted Chlamydia trachomatis infection. J Infect Dis 2009; 199:16801688.
  • 70
    Hafner LM, McNeilly C: Vaccines for Chlamydia infections of the female genital tract. Future Microbiol 2008; 3:6777.
  • 71
    Hafner L, Beagley K, Timms P: Chlamydia trachomatis infection: host immune responses and potential vaccines. Mucosal Immunol 2008; 1:116130.
  • 72
    Berry LJ, Hickey DK, Skelding KA, Bao S, Rendina AM, Hansbro PM, Gockel CM, Beagley KW: Transcutaneous immunization with combined cholera toxin and CpG adjuvant protects against Chlamydia muridarum genital tract infection. Infect Immun 2004; 72:10191028.
  • 73
    Cheng C, Bettahi I, Cruz-Fisher MI, Pal S, Jain P, Jia Z, Holmgren J, Harandi AM, De La Maza LM: Induction of protective immunity by vaccination against Chlamydia trachomatis using the major outer membrane protein adjuvanted with CpG oligodeoxynucleotide coupled to the nontoxic B subunit of cholera toxin. Vaccine 2009; 15:15.
  • 74
    Cunningham KA, Carey AJ, Lycke N, Timms P, Beagley KW: CTA1-DD is an effective adjuvant for targeting anti-chlamydial immunity to the murine genital mucosa. J Reprod Immunol 2009; 81:3438.
  • 75
    Igietseme JU, Murdin A: Induction of protective immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect Immun 2000; 68:67986806.
  • 76
    Pal S, Davis HL, Peterson EM, De La Maza LM: Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein by use of CpG oligodeoxynucleotides as an adjuvant induces a protective immune response against an intranasal chlamydial challenge. Infect Immun 2002; 70:48124817.
  • 77
    Pal S, Peterson EM, Rappuoli R, Ratti G, De La Maza LM: Immunization with the Chlamydia trachomatis major outer membrane protein, using adjuvants developed for human vaccines, can induce partial protection in a mouse model against a genital challenge. Vaccine 2006; 24:766775.
  • 78
    Pal S, Theodor I, Peterson EM, De La Maza LM: Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein can elicit a protective immune response against a genital challenge. Infect Immun 2001; 69:62406247.
  • 79
    Singh SR, Hulett K, Pillai SR, Dennis VA, Oh MK, Scissum-Gunn K: Mucosal immunization with recombinant MOMP genetically linked with modified cholera toxin confers protection against Chlamydia trachomatis infection. Vaccine 2006; 24:12131224.
  • 80
    Stephens RS, Sanchez-Pescador R, Wagar EA, Inouye C, Urdea MS: Diversity of Chlamydia trachomatis major outer membrane protein genes. J Bacteriol 1987; 169:38793885.
  • 81
    Mossman D, Beagley KW, Landay AL, Loewenthal M, Ooi C, Timms P, Boyle M: Genotyping of urogenital Chlamydia trachomatis in regional New South Wales, Australia. Sex Transm Dis 2008; 35:614616.
  • 82
    Cong Y, Jupelli M, Guentzel MN, Zhong G, Murthy AK, Arulanandam BP: Intranasal immunization with chlamydial protease-like activity factor and CpG deoxynucleotides enhances protective immunity against genital Chlamydia muridarum infection. Vaccine 2007; 25:37733780.
  • 83
    Li W, Guentzel MN, Seshu J, Zhong G, Murthy AK, Arulanandam BP: Induction of cross-serovar protection against genital chlamydial infection by a targeted multisubunit vaccination approach. Clin Vaccine Immunol 2007; 14:15371544.
  • 84
    Li W, Murthy AK, Guentzel MN, Seshu J, Forsthuber TG, Zhong G, Arulanandam BP: Antigen-specific CD4+ T cells produce sufficient IFN-{gamma} to mediate robust protective immunity against genital Chlamydia muridarum infection. J Immunol 2008; 180:33753382.
  • 85
    Murphey C, Murthy AK, Meier PA, Neal Guentzel M, Zhong G, Arulanandam BP: The protective efficacy of chlamydial protease-like activity factor vaccination is dependent upon CD4+ T cells. Cell Immunol 2006; 242:110117.
  • 86
    Murthy AK, Chambers JP, Meier PA, Zhong G, Arulanandam BP: Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. Infect Immun 2007; 75:666676.
  • 87
    Murthy AK, Cong Y, Murphey C, Guentzel MN, Forsthuber TG, Zhong G, Arulanandam BP: Chlamydial protease-like activity factor induces protective immunity against genital chlamydial infection in transgenic mice that express the human HLA-DR4 allele. Infect Immun 2006; 74:67226729.
  • 88
    Murthy AK, Guentzel MN, Zhong G, Arulanandam BP: Chlamydial protease-like activity factor – insights into immunity and vaccine development. J Reprod Immunol 2009; 83:179184.
  • 89
    Dong F, Zhong Y, Arulanandam B, Zhong G: Production of a proteolytically active protein, chlamydial protease/proteasome-like activity factor, by five different Chlamydia species. Infect Immun 2005; 73:18681872.
  • 90
    Schachter J: Infection and disease epidemiology. In Chlamydia: Intracellular Biology, Pathogenesis & Immunity, RSStephens (ed). Washington DC, American Society for Microbiology, 1999, pp 150196.
  • 91
    Grayston JT, Wang S-P, Yang Y-F, Woolridge RL: The effect of trachoma virus vaccine on the course of experimental trachoma infection in blind human volunteers. J Exp Med 1962; 115:10091022.
  • 92
    LaRue RW, Dill BD, Giles DK, Whittimore JD, Raulston JE: Chlamydial Hsp60-2 Is iron responsive in Chlamydia trachomatis serovar E-infected human endometrial epithelial cells in vitro. Infect Immun 2007; 75:23742380.
  • 93
    Mukhopadhyay S, Miller RD, Sullivan ED, Theodoropoulos C, Mathews SA, Timms P, Summersgill JT: Protein expression profiles of Chlamydia pneumoniae in models of persistence versus those of heat shock stress response. Infect Immun 2006; 74:38533863.
  • 94
    Raulston J: Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect Immun 1997; 65:45394547.
  • 95
    Timms P, Good D, Wan C, Theodoropoulos C, Mukhopadhyay S, Summersgill J, Mathews S: Differential transcriptional responses between the interferon-gamma-induction and iron-limitation models of persistence for Chlamydia pneumoniae. J Microbiol Immunol Infect 2009; 42:2737.
  • 96
    Huston W, Theodoropoulos C, Mathews S, Timms P: Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA. BMC Microbiol 2008; 8:190.
  • 97
    Kramer MJ, Gordon FB: Ultrastructural analysis of the effects of penicillin and chlortetracycline on the development of a genital tract Chlamydia. Infect Immun 1971; 3:333341.
  • 98
    Lambden PR, Pickett MA, Clarke IN: The effect of penicillin on Chlamydia trachomatis DNA replication. Microbiology 2006; 152:25732578.
  • 99
    Mpiga P, Ravaoarinoro M: Effects of sustained antibiotic bactericidal treatment on Chlamydia trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937). Int J Antimicrob Agents 2006; 27:316324.
  • 100
    Belland RJ, Nelson DE, Virok D, Crane DD, Hogan D, Sturdevant D, Beatty WL, Caldwell HD: Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc Natl Acad Sci USA 2003; 100:1597115976.
  • 101
    Goellner S, Schubert E, Liebler-Tenorio E, Hotzel H, Saluz HP, Sachse K: Transcriptional response patterns of Chlamydophila psittaci in different in vitro models of persistent infection. Infect Immun 2006; 74:48014808.
  • 102
    Kane CD, Byrne GI: Differential effects of gamma interferon on Chlamydia trachomatis growth in polarized and nonpolarized human epithelial cells in culture. Infect Immun 1998; 66:23492351.
  • 103
    Pantoja LG, Miller RD, Ramirez JA, Molestina RE, Summersgill JT: Characterization of Chlamydia pneumoniae persistence in HEp-2 cells treated with gamma interferon. Infect Immun 2001; 69:79277932.
  • 104
    Deka S, Vanover J, Dessus-Babus S, Whittimore J, Howett MK, Wyrick PB, Schoborg RV: Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cell Microbiol 2006; 8:149162.
  • 105
    Deka S, Vanover J, Sun J, Kintner J, Whittimore J, Schoborg RV: An early event in the herpes simplex virus type-2 replication cycle is sufficient to induce Chlamydia trachomatis persistence. Cell Microbiol 2007; 9:725737.
  • 106
    Stanberry LR, Spruance SL, Cunningham AL, Bernstein DI, Mindel A, Sacks S, Tyring S, Aoki FY, Slaoui M, Denis M, Vandepapeliere P, Dubin G: Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N Engl J Med 2002; 347:16521661.
  • 107
    Kutteh WH, Mestecky J, Wira CR: Mucosal immunity in the human female reproductive tract. In Mucosal Immunology, JMestecky, JBienenstock, MLamm, LMayer, JRMcGhee, WStrober (eds). Burlington, MA, USA, Elsevier Academic Press, 2005, pp 16311646.
  • 108
    Beagley KW, Gockel CM: Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol 2003; 38:1322.
  • 109
    Sullivan DA, Wira CR: Variations in free secretory component levels in mucosal secretions of the rat. J Immunol 1983; 130:13301335.
  • 110
    Wira CR, Sandoe CP: Hormonal regulation of immunoglobulins: influence of estradiol on immunoglobulins A and G in the rat uterus. Endocrinology 1980; 106:10201026.
  • 111
    Seavey MM, Mosmann TR: Paternal antigen-bearing cells transferred during insemination do not stimulate anti-paternal CD8+ T cells: role of estradiol in locally inhibiting CD8+ T cell responses. J Immunol 2006; 177:75677578.
  • 112
    Wira CR, Rossoll RM: Antigen-presenting cells in the female reproductive tract: influence of sex hormones on antigen presentation in the vagina. Immunology 1995; 84:505508.
  • 113
    Wira CR, Rossoll RM, Kaushic C: Antigen-presenting cells in the female reproductive tract: influence of estradiol on antigen presentation by vaginal cells. Endocrinology 2000; 141:28772885.
  • 114
    Gockel CM, Bao S, Holland MK, Beagley KW: Influence of the murine oestrous cycle on the induction of mucosal immunity. Am J Reprod Immunol 2003; 50:369379.
  • 115
    Johansson E-L, Wassen L, Holmgren J, Jertborn M, Rudin A: Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect Immun 2001; 69:74817486.